
1

Impact-Driven Process Model Repair

ARTEM POLYVYANYY, Queensland University of Technology, Brisbane, Australia

WIL M.P. VAN DER AALST, Eindhoven University of Technology, Eindhoven, The Netherlands, and

Queensland University of Technology, Brisbane, Australia

ARTHUR H.M. TER HOFSTEDE, Queensland University of Technology, Brisbane, Australia, and

Eindhoven University of Technology, Eindhoven, The Netherlands

MOE T. WYNN, Queensland University of Technology, Brisbane, Australia

The abundance of event data in today’s information systems makes it possible to “confront” process models with the

actual observed behavior. Process mining techniques use event logs to discover process models that describe the observed

behavior, and to check conformance of process models by diagnosing deviations between models and reality. In many

situations it is desirable to mediate between a preexisting model and observed behavior. Hence, we would like to repair

the model while improving the correspondence between model and log as much as possible. The approach presented

in this paper assigns predefined costs to repair actions (allowing inserting or skipping of activities). Given a maximum

degree of change, we search for models that are optimal in terms of fitness, i.e., the fraction of behavior in the log not

possible according to the model is minimized. To compute fitness we need to align the model and log and this can be time

consuming. Hence, finding an optimal repair may be intractable. We propose different alternative approaches to speed-up

repair. The number of alignment computations can be reduced dramatically while still returning near-optimal repairs. The

different approaches have been implemented using the process mining framework ProM and evaluated using real-life logs.

CCS Concepts: •Theory of computation → Design and analysis of algorithms; •Information systems → Information

systems applications; •Mathematics of computing→ Combinatorial optimization;

Additional Key Words and Phrases: Process mining, process model repair, repair recommendation, process model, event log

ACM Reference Format:

Artem Polyvyanyy, Wil M.P. van der Aalst, Arthur H.M. ter Hofstede, Moe T. Wynn. 2016. Impact-Driven Process Model

Repair. ACM Trans. Softw. Eng. Methodol. (July 2016), 52 pages.

1. INTRODUCTION

Process mining techniques [van der Aalst 2011] aim to bridge the gap between process-centric ap-
proaches that use models to analyze or implement operational processes and data-centric approaches
focusing on data analysis (data mining, machine learning, statistics, etc.). Process mining includes
(automated) process discovery (learning process models from raw event data), conformance checking
(monitoring deviations by comparing model and log), organizational mining, e.g., discovering roles
in processes, decision-point analysis, bottleneck analysis, automated construction of simulation

Authors’ address: A. Polyvyanyy (artem.polyvyanyy@qut.edu.au), A.H.M. ter Hofstede (a.terhofstede@qut.edu.au), and
Moe T. Wynn (m.wynn@qut.edu.au), Business Process Management Discipline, Information Systems School, Science &
Engineering Faculty, Queensland University of Technology, Brisbane, Australia. W.M.P van der Aalst (w.m.p.v.d.aalst@tue.nl),
Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2016 ACM. 1539-9087/2016/07-ART1 $15.00

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:2 A. Polyvyanyy et al.

process

discovery

conformance

checking

impact-driven

model repair

x� No initial model is given.

x� Purely driven by event data.

x� *RDO�LV�WR�ILQG�D�PRGHO�WKDW�EHVW�´ILWVµ�WKH�GDWD.

x� Problem: event data are merely a sample of what is possible,

making it difficult to balance between overfitting and

underfitting.

x� Problem: domain knowledge cannot be exploited to guide

discovery.

x� Problem: process models may be highly variable over time

(different samples of the same process may lead to very

different models).

x� Problem: wavering collection of models makes interpretation of

projected data on models (e.g., performance) difficult.

x� Event data and process model are

compared.

x� Model is considered to be the

´QRUPµ.

x� Goal is to quantify deviations and

to diagnose them.

x� Problem: initial model may be

deviating too much from reality to

be useful.

x� Problem: the problem of creating a

´EHWWHUµ�PRGHO�LV�OHIW�WR�WKH�XVHU.

x� Process model is repaired based

on event data.

x� Mediates between model and

reality and returns a model

reflecting the trade-off.

x� The degree of change can be

limited thereby taking into account

WKH�´VHYHULW\µ�RI�WKH�UHSDLU.

x� The repairs that have the highest

impact on fitness are selected,

\LHOGLQJ�DQ�´RSWLPDO�PRGHOµ.

Fig. 1: Impact-driven process model repair as the bridge between two extremes: process discovery
(discovering the model using just the data) and conformance checking (taking the model as the
“norm”, without producing a “better” model).

models (covering different perspectives), and process-centric predictive analytics, e.g., estimating the
remaining flow time of a running case or recommending activities and resources.

Input for any process mining exercise is an event log. An event log is composed of traces and each
trace represents a process instance (case). A trace corresponds to a sequence of events denoting the
“life” of a process instance and is typically represented by a sequence of activity labels. Process mining
connects observed behavior, i.e., an event log, to a process model, e.g., a Petri net, a BPMN model, a
UML activity diagram, or an EPC, to answer questions related to conformance or performance.

This paper focuses on data-driven process model repair. Given an initial process model and an
event log, a repaired process model is produced. The goal is to create a model that is as close to
the original model as possible and at the same time allows for as much of the observed behavior
as possible. Process model repair sits in-between process discovery and conformance checking,
cf. Fig. 1. Techniques for process discovery do not consider an initial model and construct a model
that best “fits the data”. Conformance checking techniques consider the initial model to be the “norm”
and only diagnose and quantify deviations without constructing a new process model. Unlike process
discovery and conformance checking, data-driven process model repair approaches aim for a trade-off
between observed and modeled behavior. Although this paper focuses on control-flow only, it is
important to understand that performance analysis, decision-point analysis, predictive analytics, etc.
rely on a proper control-flow model and events related to model elements. In fact, process discovery
and model repair serve as a starting point for more advanced types of analysis. The latter are outside
the scope of this paper, but of great practical value.

Dozens of process discovery algorithms have been proposed in literature. For example, inductive
mining techniques [Leemans et al. 2013; Leemans et al. 2015] provide formal guarantees (soundness
and, if desired, also satisfying a preset minimal fitness level), can deal with infrequent behavior, and
are highly scalable, i.e., deal with extremely large event logs and support distribution. This triggers
the following question: Why repair an existing model and not simply discover a “fresh” model from
the event log? This question indicates that repair only makes sense if the initial hand-made model
provides additional insights. In many process mining scenarios one can find such models. In fact,
there may be various reasons for using an initial model:

○ The event log may be incomplete and domain knowledge captured in the initial model can help to
guide discovery. For more complex processes typically only a fraction of all possible traces can
be observed. An initial model may help to avoid overfitting or underfitting the event data.
○ Users may be familiar with a process model, e.g., a reference model, and should not be confronted

with unnecessarily different models. The process may change over time and one would only like
to see the significant changes, i.e., repairing a process model rather than discovering a model from
scratch. Process discovery techniques may yield very different models even when changes in the

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:3

process are small, so, to avoid wavering, changes should only be made if there are significant
changes in the event data.
○ Process models may be descriptive or normative. If the desired model has normative elements but

should also reflect reality as well as possible, then trade-offs are unavoidable. Some deviations
may be unacceptable and should not end up in the repaired model. Other deviations may trigger
model changes to better reflect reality.

Note that event logs only contain sample data collected over a particular period. Even when the
underlying process does not change, the event log in one period may contain traces not observed
in other periods and vice versa. If a trace did not happen, one cannot conclude that it could not
have happened, i.e., there are no negative traces. Given these uncertainties, it makes sense to exploit
a reference or handcrafted model. Process models are used to project information on, e.g., about
current bottlenecks or risks. End-users need to be able to interpret this information and, therefore,
should have sufficient control over the models used to project this information on.

The repair approach described in this paper builds on the notion of alignments [van der Aalst et al.
2012; Adriansyah 2014]. An alignment relates each trace in the event log to a path in the process
model, i.e., a model execution. An alignment can be viewed as a sequence of moves. Model and
reality move synchronously if they agree. If reality and model disagree, the model needs to make a
move that cannot be mimicked by the event log or the event log needs to make a move that cannot
be mimicked by the model. Alignments serve two purposes: diagnosing where model and reality
disagree and mapping traces in the log onto model executions (even when the fit is not perfect). This
information can be used to repair the model and to quantify the (possible) effects of repair actions.

Conformance checking techniques can be used to diagnose imperfections of the model, but leave
the actual repair of the model to the user. Fahland et al. [Fahland and van der Aalst 2015] proposed
a technique to repair models by decomposing the log into several sublogs of non-fitting subtraces.
For each sublog, either a loop is discovered that can replay the sublog or a subprocess is derived
that is then added to the original model at the appropriate location. Just like in [Fahland and van der
Aalst 2015], we aim to exploit the alignments between the original process model and event log.
However, we want to control the degree of change and make sure the impact of the changes we allow
is maximal. We refer to this as impact-driven process model repair (see Fig. 1). Instead of fixing
every problem as in [Fahland and van der Aalst 2015], we look for those process model repairs that
have most impact (thereby considering various trade-offs).

The approach proposed in this paper can be summarized as follows. We assign costs to repair
actions of inserting and skipping activities in the model. For example, one can decide that inserting a
payment activity in the model is more costly than skipping a check activity. To limit model change,
the total repair cost (the cost of all repair actions) should not exceed a preset level of available repair
resources. Thus, if certain repair actions are undesirable, their costs can be set high. We are interested
in the set of repair actions that maximize fitness. Model and log have perfect fitness if all moves
in their alignment are synchronous, i.e., there are no deviations. At the same time, cost of repair
must be lower than the given repair resources. We use another cost model to quantify deviations,
i.e., mismatches between the model and log, as some deviations may indeed be more severe than
others. The sum of all deviations is a measure of fitness, which we strive to minimize.

By checking all possible combinations of repair actions, i.e., inserting and skipping activities, we
can always find an “optimal” repaired model within the range set by the available repair resources.
This is a model whose total repair cost does not exceed the preset level and has the best fitness with
the log. There may be multiple “optimally repaired” models that have the same fitness with the log.
Note that it may be time consuming to compute alignments when log and model are large, as we
need to solve an optimization problem per trace and there may be thousands or millions of traces
in the log. Hence, a brute-force approach becomes intractable if there are many candidate repairs
and large event logs. Therefore, we propose various alternative approaches limiting the number of
alignment computations. It turns out that we can dramatically decrease computation time, while still
returning models of good quality.

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:4 A. Polyvyanyy et al.

The different repair techniques have been implemented using the process mining framework

ProM.1 The impact-driven process model repair approach has been evaluated using artificial event
logs (to illustrate particular phenomena) and real-life event logs (to show feasibility in practice).
Experiments show that to obtain a small improvement in repair quality, often much more computation
time is needed. If the degree of change allowed is small, all the proposed techniques tend to discover
same repair recommendations. The results justify our exploration of different repair strategies and
demonstrate scalability and feasibility of impact-driven process model repair in real-life settings.

The remainder of the paper is organized as follows. Section 2 introduces basic notions such as
event logs and Petri nets. The results are not specific for Petri nets and are equally applicable to
other notations, including BPMN, BPEL, EPCs, and UML Activity Diagrams. However, we need
a theoretical foundation to reason about repairs and alignments. Section 3 introduces the topic of
conformance checking thereby focusing on the seminal notion of alignments. Alignments are later
used for repairing models. In Section 4, the topic of event-based model repair is introduced. Section 5
introduces the notion of repair resources to limit the search space of possible repairs, i.e., repair
resources are bounded. Given this, the notion of “optimal repair” is defined. Section 6 provides
algorithms for different repair approaches including an exhaustive search method for solving the
optimal model repair recommendation problem and alternative approaches capable of discovering
viable minimal optimal repair recommendations using efficient approximation schemes. In Section 7
the different approaches are evaluated and compared. Related work is discussed in Section 8. Section 9
concludes the paper and outlines future work. Finally, Appendix A and Appendix B list all the proofs
of mathematical statements claimed in the paper and the specific mathematical notations used in the
paper, respectively.

2. PRELIMINARIES

This section introduces basic concepts that are related to event logs and Petri nets. These concepts
will be used to support later discussions.

2.1. Multisets, Sequences, and Functions

In mathematics, a multiset, or a bag, is a generalization of the concept of a set that allows a multiset
to contain multiple instances of the same element. It is a common practice to employ multisets to
encode states of Petri nets. Moreover, an event log is usually formalized as a multiset of traces to
capture the fact that the same trace may appear multiple times in the event log.

Let A be a set. By P(A) and B(A), where B ∶ A→N0, we denote the power set of A and the set of

all finite multisets over A, respectively.2 For some multiset B ∈ B(A), B(a) denotes the multiplicity of
element a in B, i.e., the number of times element a ∈ A appears in B. For example, B1 ∶= [], B2 ∶= [a],
B3 ∶= [a,b,b], B4 ∶= [a,b,b,c,b,a], and B5 ∶= [a2

,c,b,b0
,b2] are multisets over A ∶= {a,b,c}. Multiset

B1 is empty, i.e., contains no elements. Multiset B2 contains a single element a ∈ A. Multiset B3

contains three elements: one occurrence of element a ∈ A and two occurrences of element b ∈ A.
Multisets B4 and B5 both contain six elements and are equal, i.e., B4 = [a2

,b3
,c] = B5. The above

examples demonstrate the notation (with its compact version) for describing multisets and hint at the
fact that the ordering of elements in multisets is irrelevant.

The standard set operations have been extended to deal with multisets as follows. If element
a is a member of multiset B, this is denoted by a ∈ B, while if element b is not a member of
B, we write b /∈ B. For example, for the multisets defined above, it holds that a ∈ B2, b /∈ B2, and
a,b ∈ B3. The union of two multisets C and D, denoted by C⊎D, is the multiset that contains all
elements of C and D such that the multiplicity of an element in the resulting multiset is equal to the
sum of multiplicities of this element in C and D. For example, [a,a,b,b] = B2⊎B3 = [a2

,b2]. The
difference of two multisets C and D, denoted by C∖D, is the multiset that for every element x in C

1Use our command line tool or download ProM from http://www.promtools.org and use the SelectivePRepair package.
The command line tool and the package are available via https://svn.win.tue.nl/repos/prom/Packages/SelectivePRepair.
2
N0 denotes the set of all natural numbers including zero.

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:5

contains max(0,C(x)−D(x)) occurrences of element x. For example, it holds that B4∖B3 = [a,b,c],
B2 ∖B4 = [], and B4 ∖B2 = [a,b3

,c]. Finally, the cardinality of a multiset B, denoted by ∣B∣, is the
sum of the occurrences of its members. For example, it holds that ∣B1∣ = 0, ∣B2∣ = 1, ∣B3∣ = 3, and
∣B4∣ = 6 = ∣B5∣.

Given a multiset B ∈B(A) over some set A, by Set(B) we refer to the set that contains all and only
elements in B, i.e., Set(B) ∶= {b ∈ A∣b ∈ B}.

In mathematics, a sequence is an ordered list of elements. Similar to multisets, in a sequence,
instances of the same element can appear multiple times. However, unlike in multisets, positions of
element occurrences in the sequence matter. We use sequences to capture traces in event logs and
orderings of transition occurrences in Petri nets. By σ ∶= ⟨a1,a2, . . . ,an⟩ ∈ A∗, we denote a sequence

of length n ∈N0 over some set A, ai ∈ A, i ∈ [1..n].3 The empty sequence, i.e., the sequence without
elements, is denoted by ⟨⟩. By ∣σ ∣, we indicate the number of all occurrences of elements in σ . Given
a sequence σ and a set K, by σ ∣K we denote the restriction of σ to K, i.e., a sequence obtained from σ
by deleting all elements of σ that are not members of K without changing the order of the remaining
elements. A sequence σ is said to be a prefix of a sequence ω iff there exists a sequence σ ′ such that
concatenation of σ and σ ′, i.e., the sequence obtained by appending σ ′ to the end of σ , is equal to
ω . Given a sequence σ ∶= ⟨a1,a2, . . . ,an⟩ ∈ A∗, n ∈N0, we define the i-th prefix of σ , i ∈ [0 ..n], as

σ [i] ∶= ⟨a1,a2, . . . ,ai⟩. For example, if σ ∶= ⟨a,b,a,b,a,h,a, l,a,m,a,h,a⟩, then it holds that ∣σ ∣ = 13,

σ [2] = ⟨a,b⟩, σ [5] = ⟨a,b,a,b,a⟩, σ [7] = ⟨a,b,a,b,a,h,a⟩, and σ [0] is the empty sequence.
Given a sequence σ ∶= ⟨a1,a2, . . . ,an⟩ ∈ A∗, n ∈ N0, by Set(σ) we refer to the set that contains

every element of σ , i.e., Set(σ) ∶= {b ∈ A∣∃ i ∈ [1..n] ∶ ai = b}.
Let k ∶= (k1,k2, . . . ,kn) ∈K1×K2× . . .×Kn be a point in n-dimensional space, where K1,K2, . . . ,Kn

are some sets. The projection function πi(k), i ∈ [1..n], is defined as πi(k) ∶= ki, where ki is the
i-th coordinate of k. Let κ ∶= ⟨κ1,κ2, . . . ,κm⟩, m ∈N0, where κ j ∈ K1×K2× . . .×Kn, j ∈ [1..m], be a
sequence of points in n-dimensional space. Then, πi(κ) ∶= ⟨πi(κ1),πi(κ2), . . . ,πi(κm)⟩, i ∈ [1..n], is
the sequence of i-th coordinates of elements of κ .

2.2. Petri Nets and Net Systems

Petri nets is a well-established mathematical modeling language for the description of distributed
systems [Reisig 1998]. In this paper, we use Petri nets to discuss our ideas and present results.
However, all the discussions can be easily adapted for various other modeling languages, e.g., BPMN,
BPEL, EPC, UML Activity Diagram, etc.

DEFINITION 2.1 (PETRI NET).
A Petri net is a triple N ∶= (P,T,F), where P and T are finite disjoint sets of places and transitions,
respectively, and F ⊆ (P×T)∪(T ×P) is the flow relation. ⌟
An element x ∈P∪T is a node of N. A node x ∈P∪T is an input node of a node y ∈P∪T iff (x,y) ∈F .
Similarly, a node x ∈ P∪T is an output node of a node y ∈ P∪T iff (y,x) ∈ F . By ●x, x ∈ P∪T , we
denote the preset of x, i.e., the set of all input nodes of x, while by x●, we denote the postset of x,
i.e., the set of all output nodes of x. For a set of nodes X ⊆ P∪T , ●X ∶=⋃x∈X ●x and X● ∶=⋃x∈X x●.

Transitions of Petri nets are used to encode actions. It is often convenient to distinguish between
observable and silent transitions to describe actions that have a well-defined meaning and those that
have no domain interpretation, respectively. Moreover, one may wish to assign a certain semantics in
the application domain to several different transitions. To this end, one can use labeled Petri nets.

Let A denote the universe of labels and let τ signify a special label such that τ /∈A.

DEFINITION 2.2 (LABELED NET).
A labeled Petri net, or a labeled net, or a net, is a 4-tuple N ∶= (P,T,F,λ), where (P,T,F) is a Petri
net and λ ∶ T →A∪{τ} is a function that assigns labels to transitions. ⌟
3A∗ denotes the Kleene star operation on set A.

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:6 A. Polyvyanyy et al.

a
p1

c

d

b f

g

h

e

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

p2

p3

p4 p5

p6

p7

p8

p9

p10 p11

Fig. 2: A net system that is an adapted version of Fig. 2 in [van der Aalst 2013], where a = “update
request registration”, b = “examine file”, c = “check ticket”, d = “decide”, e = “reinitiate request”,
f = “send acceptance letter”, g = “pay compensation”, and h = “send rejection letter”.

If λ(t) ≠ τ , t ∈ T , then t is observable; otherwise, t is silent.
The execution semantics of labeled nets is defined in terms of states and state transitions. A state

of a labeled net is captured by the concept of a marking.

DEFINITION 2.3 (MARKING OF A NET).
A marking of a labeled net N ∶= (P,T,F,λ) is a multiset M ∈B(P). ⌟
A marking M of a labeled net N ∶= (P,T,F,λ) is often interpreted as an assignment of tokens to
places, i.e., marking M ‘puts’ M(p) tokens at place p, p ∈ P.

Let N ∶= (P,T,F,λ) be a labeled net. A transition t ∈ T is enabled in a marking M of N, denoted
by (N,M)[t⟩, iff every input place of t contains at least one token, i.e., ∀p ∈ ●t ∶M(p) > 0. If a
transition t ∈ T is enabled in a marking M of N, then t can occur, which leads to a fresh marking
M′ ∶= (M ∖●t)⊎ t● of N, i.e., transition t ‘consumes’ one token from every input place of t and
‘produces’ one token for every output place of t. By (N,M)[t⟩(N,M′), we denote the fact that an
occurrence of transition t leads from marking M to marking M′ in net N.

A finite sequence of transitions σ ∶= ⟨t1,t2, . . . ,tn⟩ ∈ T∗, n ∈ N0, is an occurrence sequence
of a labeled net N ∶= (P,T,F,λ) in a marking M iff σ is empty or there exists a sequence of
markings ⟨M0,M1, . . . ,Mn⟩, such that M0 =M and for every position i ∈ [1..n] in σ it holds that
(N,Mi−1)[ti⟩(N,Mi); we say that σ leads from M0 to Mn. By (N,M)[σ⟩(N,M′), we say that σ
leads from marking M to marking M′. A marking M′ is reachable from a marking M in N iff there
exists an occurrence sequence of N that leads from M to M′.

A net system is a labeled net with two markings, one initial and the other final.

DEFINITION 2.4 (NET SYSTEM).
A net system, or a system, is a triple S ∶= (N,Mini,Mfin), where N ∶= (P,T,F,λ) is a labeled net,
Mini ∈B(P) is the initial marking of N, and Mfin ∈B(P) is the final marking of N. ⌟
By S, we denote the universe of net systems. Net systems have a well-established graphical notation.
In this notation, places are visualized as circles, silent transitions are drawn as empty rectangles
while each observable transition depicts the assigned label within its boundaries, every pair of nodes
(x,y) in the flow relation is depicted as a directed arc that leads from x to y, and tokens induced by
the initial marking are depicted as black dots inside the assigned places. Note that there is no explicit
visual notation for capturing the final marking (the reader is cordially invited to invent one).

Fig. 2 visualizes a net system. At this stage the reader should easily recognize that this net
system can be formalized as a tuple (N,Mini,Mfin), N ∶= (P,T,F,λ), where P ∶= {p1, . . . , p11}, T ∶=
{t1, . . . ,t11}, the flow relation F contains 27 ordered pairs that encode all the directed arcs in the
figure, e.g., (p1,t1),(t1, p2),(t1, p4) ∈ F are all the arcs that are incident with transition t1 ∈ T , λ ∶=

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:7

{(t1,a),(t2,b),(t3,τ),(t4,c),(t5,d),(t6,e),(t7,τ),(t8,f),(t9,g),(t10,h),(t11,τ)}, and Mini ∶= [p1].
Transitions t3, t7, and t11 are silent, while all the other transitions in the figure are observable. An
occurrence of an observable transition signifies completion of the corresponding activity (captured
by the assigned label). In the figure we use short labels. Their full counterparts are proposed in the
caption to Fig. 2. For example, an occurrence of transition t1 ∈ T represents completion of activity a,
i.e., the activity of updating request registration.

When working with a net system, it is often convenient to refer to its executions.

DEFINITION 2.5 (EXECUTION, LABEL EXECUTION, OBSERVABLE EXECUTION).
An execution of a net system S ∶= (N,Mini,Mfin), N ∶= (P,T,F,λ), is an occurrence sequence of N
that leads from Mini to Mfin. Let σ ∶= ⟨t1,t2, . . . ,tn⟩ ∈ T∗, n ∈ N0, be an execution of S. Then, α ∶=
⟨λ(t1),λ(t2), . . . ,λ(tn)⟩ is the label execution of S induced by σ , while β ∶= α ∣A is the observable
execution of S induced by σ . ⌟
An execution of a net system is an occurrence sequence that leads from its initial to its final marking.
Given a net system S, by ES we refer to the set of all executions of S.

Note that the labeled net N of the net system in Fig. 2 is a labeled workflow net [van der Aalst
1997], i.e., it has a dedicated source place p1 and a dedicated sink place p11 such that every node of
N is on a directed path from the source to the sink. Workflow nets are often used as abstract models
for the explicit representation, validation, and verification of business procedures. Every workflow
net describes a collection of business cases as executions that lead from its initial marking that puts
one token at the source place and no tokens elsewhere to its final marking that puts one token at the
sink place and no tokens elsewhere. Thus, it is common practice to define the final marking of a net
system (N,Mini,Mfin), where N ∶= (P,T,F,λ) is a labeled workflow net with a sink place p ∈ P, as
the multiset [p]. Accordingly, we define the final marking of the net system in Fig. 2 as the marking
that puts one token at place p11 and no tokens elsewhere.

The sequences of transitions ⟨t1,t2,t4,t5,t10⟩ and ⟨t1,t4,t3,t5,t6,t2,t4,t5,t7,t9,t8,t11⟩ are two exam-
ple executions of the net system S in Fig. 2. Note that the set ES, i.e., the set of all executions of the
system in Fig. 2, is infinite due to the presence of a loop.

In the sequel, we require that every net system has at least one execution, i.e., for every S ∈ S it
holds that ES ≠∅, and is bounded, i.e., the set of all reachable markings of the system is finite. These
requirements are introduced to allow alignment-based conformance checking between event logs
and net systems, refer to Section 3. No other requirements are imposed on net systems. For example,
given a net system, it is possible that the net enables a transition in its final marking.

2.3. Event Logs

An event log is a mathematical model for capturing the historic information about executions of
dynamic systems. Formally, an event log is a multiset of traces, where every trace describes an
execution of some (distributed) system, i.e., a process instance, as a sequence of observed events.

DEFINITION 2.6 (TRACE, EVENT LOG).
A trace is a finite sequence of labels. An event log, or a log, is a multiset over a set of traces. ⌟
We assume that every label in a trace υ ∈A∗ signifies an event, i.e., an occurrence of an activity.
Furthermore, we assume that the order in which labels appear in a trace encodes temporal relations
between the events, i.e., a label at position i signifies an event that was observed before an event
denoted by a label at position j, j > i, of the trace. The ability of an event log to contain multiple
instances of a trace allows for capturing the fact that some process execution was observed and
recorded several times. Note that in situations when labels in an event log do not directly correspond to
occurrences of activities in the corresponding model, such correspondences can often be constructed
automatically, e.g., using the techniques proposed in [Baier et al. 2015a; Baier et al. 2015b].

Consider these three example event logs:

○ L1 ∶= [⟨a,c,d,h⟩10
,⟨a,b,c,d,f,g⟩7,⟨a,c,d,e,b,c,d,f,g⟩5],

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:8 A. Polyvyanyy et al.

○ L2 ∶= [⟨a,c,b,d,f,g⟩25
,⟨a,b,c,d,e,x,c,h,a⟩15], and

○ L3 ∶= [⟨a,b,c,f,d,e,f⟩10
,⟨a,c,d,c,e,d,g,f⟩9,⟨a,b,c,d,e,x,c,h,a⟩9,

⟨c,d,d,f,e,g⟩7,⟨a,b⟩6,⟨a,b,c,d,e,d,f⟩2,⟨a,b,c,d,e,b,c,d,g⟩2].
The reader may recognize that event log L1 contains information about 10+7+5 = 22 executions of
the net system S in Fig. 2. Indeed, trace υ1 ∶= ⟨a,c,d,h⟩ can be interpreted as capturing execution
σ ∶= ⟨t1,t3,t4,t5,t10⟩ of S; note that υ1 is the observable execution of S induced by σ . Similarly,
traces υ2 ∶= ⟨a,b,c,d,f,g⟩ and υ3 ∶= ⟨a,c,d,e,b,c,d,f,g⟩ can be interpreted as capturing executions
⟨t1,t2,t4,t5,t7,t8,t9,t11⟩ and ⟨t1,t4,t3,t5,t6,t2,t4,t5,t7,t8,t9,t11⟩ of S, respectively. According to event
log L1, 10 executions followed trace υ1, 7 executions followed trace υ2, and 5 executions followed
trace υ3. In total, event log L1 records information about 4×10+6×7+9×5 = 127 observed events.

Event log L2 stores information about 40 process instances that comprise 285 observed events.
While trace ⟨a,c,b,d,f,g⟩ is an observable execution of the net system in Fig. 2 induced by ex-
ecution ⟨t1,t4,t2,t5,t7,t8,t9,t11⟩, there exists no execution of the net system in Fig. 2 that induces
observable execution ⟨a,b,c,d,e,x,c,h,a⟩. Finally, event log L3 describes 45 process instances of
some distributed system.

In what follows, we will use the three event logs listed above to exemplify and discuss proposed
concepts and principles.

3. CONFORMANCE CHECKING

In an ideal situation, every trace in an event log L of a distributed system S describes some observable
execution of S. In this perfect world, we can say that L fits S perfectly.

DEFINITION 3.1 (PERFECTLY FITTING EVENT LOG).
An event log L ∈ B(A∗) fits perfectly a net system S ∈ S if and only if for every trace υ ∈ L there
exists an observable execution β of S for which it holds that υ = β . ⌟
For example, event log L1 from Section 2.3 fits perfectly the net system in Fig. 2. In the real world,
however, observed process instances may deviate from those captured in the model. The reasons
for deviations are manifold. For example, a deviation can be caused by a decision to perform an
ad hoc activity while executing an outdated model that no longer caters for all the required process
instances, or may stem from a bypass of a recognized problem in the model. In this light, event log
L2 proposed in Section 2.3 can be interpreted as a data structure that captures the historic information
on executions of the net system in Fig. 2.

In process mining, conformance checking refers to the following problem: Given an event log L
and a model of a distributed system S, e.g., a net system, check whether traces in L are in accordance
with (observable) executions of S.

Conformance checking is interesting for various reasons. It can be used to audit processes to
check whether observed reality conforms to some descriptive model [van der Aalst et al. 2010],
as deviations between modeled and observed processes may point to fraudulent cases and poorly
designed process practices. Moreover, conformance checking can serve as the basis for evaluating
performance of process discovery techniques. Specifically, techniques for conformance checking
can be used to assess how well do process instances recorded in an event log L fit a model that is
discovered from L, cf. [van der Aalst 2011].

A system with a ‘good’ fitness allows for most of the process instances seen in the event log. There
are various ways to measure fitness between event logs and net systems [Rozinat and van der Aalst
2008; van der Aalst et al. 2012; Munoz-Gama and Carmona 2011]. A starting point when studying
the degree to which a trace in an event log deviates from some execution of a system is the alignment
between these two artifacts. Consider the five alignments proposed below.

γ1 ∶=
a c b d ≫ f g ≫

a c b d τ f g τ
t1 t4 t2 t5 t7 t8 t9 t11

γ2 ∶=
a c b d ≫ ≫ ≫ ≫ ≫ f g ≫

a c b d e c τ d τ f g τ
t1 t4 t2 t5 t6 t4 t3 t5 t7 t8 t9 t11

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:9

γ3 ∶=
a b c d e x c h a

a b c d ≫ ≫ ≫ h ≫

t1 t2 t4 t5 t10

γ4 ∶=
a b c d e x c ≫ ≫ h a

a b c d e ≫ c τ d h ≫

t1 t2 t4 t5 t6 t4 t3 t5 t10

γ5 ∶=
a b c d e ≫ x c ≫ h a

a b c d e τ ≫ c d h ≫

t1 t2 t4 t5 t6 t3 t4 t5 t10

These are alignments between traces ⟨a,c,b,d,f,g⟩ and ⟨a,b,c,d,e,x,c,h,a⟩ in event log L2

listed in Section 2.3 and executions of the net system in Fig. 2. The top row of an alignment refers to
‘steps on trace’, while the bottom two rows refer to ‘steps on system’. Note that every step on system
is given by the transition and its label, as there could be multiple transitions with the same label; for
example, transitions t3, t7, and t11, all ‘carry’ label τ .

An alignment between a trace in an event log and an execution of a net system can be formalized
as a sequence of moves, where a move is a pair in which the first component refers to an element in
the trace and the second component refers to an element in the execution. Let ‘≫’ be a special ‘no
move’ symbol which is neither a label, i.e.,≫ /∈A∪{τ}, nor a transition, i.e., for every net system
(N,Mini,Mfin) ∈ S, where N ∶= (P,T,F,λ), it holds that≫ /∈ T . A move is a pair as detailed below.

DEFINITION 3.2 (MOVE, LEGAL MOVE).
A move over a net system S ∶= (N,Mini,Mfin) ∈ S, where N ∶= (P,T,F,λ),
is a pair (x,y) ∈ (A∪{≫})×(T ∪{≫})∖{(≫,≫)}.
○ Move (x,y) is a move on trace iff x ∈A and y =≫.
○ Move (x,y) is a move on system iff x =≫ and y ∈ T .
○ Move (x,y) is a synchronous move iff x ∈A, y ∈ T , and λ(y) = x.

Move (x,y) is a legal move over S if it is either a move on trace, a move on system, or a synchronous
move; otherwise move (x,y) is an illegal move over S. ⌟
By MS, we denote the set of all legal moves over a net system S. Moves on trace are introduced
to capture situations when events in traces cannot be mimicked by occurrences of transitions. For
examples, (a,≫) and (x,≫) are the two moves on trace of alignment γ4 proposed above. Moves
on system represent cases when occurrences of transitions cannot be mimicked by events in traces.
For instance, (≫,t3) and (≫,t5) are the two moves on system of alignment γ4. Finally, synchronous
moves signify occurrences of transitions that are mimicked by events in traces. For example, (a,t1),(b,t2),(c,t4),(d,t5),(e,t6),and (h,t10) are all the synchronous moves of γ4.

An alignment between a trace υ and an execution of a net system σ is a sequence of moves that
‘respects’ the orders of elements in υ and σ .

DEFINITION 3.3 (ALIGNMENT).
An alignment between a trace υ ∈A∗ and an execution σ of a net system S ∶= (N,Mini,Mfin), where
N ∶= (P,T,F,λ), is a finite sequence γ ∈M∗S of legal moves over S for which it holds that π1(γ)∣A = υ
and π2(γ)∣T = σ . ⌟
As illustrated above, in dealing with alignments it is convenient to represent them by means of tables.
In such a representation, moves are encoded as columns, where two successive columns in a table
refer to two successive moves in the alignment. Each column in an alignment table has three rows.
Given a move over a net system, the corresponding column of an alignment table is populated as
follows. The top row of the column contains the first component of the move, which is either a label
that encodes an observed event or the special no move symbol ‘≫’. The bottom row of the column
is kept empty if the second component of the move is the no move symbol. Otherwise, it contains
the second component of the move, which encodes an occurrence of a transition. The middle row
contains ‘≫’ if the second component of the move is the special no move symbol. Otherwise, it
contains a label assigned to a transition recorded as the second component of the move. Since an

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:10 A. Polyvyanyy et al.

alignment table specifies the alignment unambiguously, it is customary and convenient to refer to the
table of an alignment γ as γ itself.

For instance, two tables γ1 and γ2 proposed in the beginning of this section specify two alignments
defined by two sequences of moves ⟨(a,t1),(c,t4),(b,t2),(d,t5),(≫,t7),(f,t8),(g,t9),(≫,t11)⟩
and ⟨(a,t1),(c,t4),(b,t2),(d,t5),(≫,t6),(≫,t4),(≫,t3),(≫,t5),(≫,t7),(f,t8),(g,t9),(≫,t11)⟩, respec-
tively. Note that alignments γ1 and γ2 do indeed ‘respect’ the orders of elements in traces and
executions as it holds that π1(γ1)∣A = ⟨a,c,b,d,f,g⟩, π2(γ1)∣T = ⟨t1,t4,t2,t5,t7,t8,t9,t11⟩, π1(γ2)∣A =⟨a,c,b,d,f,g⟩, π2(γ2)∣T =⟨t1,t4,t2,t5,t6,t4,t3,t5,t7,t8,t9,t11⟩; T is the set of all transitions in Fig. 2.

Two alignments between the same trace but two distinct executions show different deviations
between the observed and modeled process instances. A common approach to comparing alignments
is by quantifying them based on the moves that they contain.

DEFINITION 3.4 (COST OF LEGAL MOVES).
A cost function on legal moves over a net system S ∈ S is a function c ∶MS →N0 that assigns costs to
legal moves over S. ⌟
The cost of an alignment is the sum of costs of all moves of this alignment.

DEFINITION 3.5 (ALIGNMENT COST).
The cost of an alignment γ between a trace υ ∈A∗ and an execution σ of a net system S ∈ S as per a
cost function c on legal moves over S is denoted by c(γ) and is the sum of costs of all moves of γ ,

i.e., c(γ) ∶=∑∣γ∣i=1 c(γ i). ⌟
It is often convenient to work with the standard cost function. The standard cost function on legal
moves over a net system S ∶= (N,Mini,Mfin), N ∶= (P,T,F,λ), is the function stdcS ∶MS→ {0,1} such
that stdcS(x,y) = 0 if it holds that (x,y) is either a synchronous move over S, or x =≫, y ∈ T and
λ(y) = τ , and stdcS(x,y) = 1 otherwise. We will omit the subscript S where the context is clear. The
cost of an alignment as per the standard cost function is equal to the number of moves on trace and
moves on system that are defined for observable transitions in the alignment, i.e., it is equal to the
number of deviations between the observed process instance and the modeled one.

Given a trace and two alignments between this trace and two distinct executions of a net system,
the one with the lower cost exhibits less severe deviations (as per the employed cost function) from
the corresponding execution, i.e., it justifies a better fit of the trace and the net system. For example,
stdcS(γ1) = 0, stdcS(γ2) = 3, stdcS(γ3) = 4, stdcS(γ4) = 3, and stdcS(γ5) = 3, where S is the net system
in Fig. 2 and γ1–γ5 are the five alignments proposed in the beginning of this section. Thus, as per the
standard cost function, alignment γ1 justifies a ‘better’ fit between trace ⟨a,c,b,d,f,g⟩ and S than
alignment γ2. Similarly, γ4 and γ5 justify a ‘better’ fit between ⟨a,b,c,d,e,x,c,h,a⟩ and S than γ3.

Given a trace υ ∈A∗ and a net system S ∈ S, by A
υ
S we denote the set that for every execution

σ ∈ ES contains all alignments between υ and σ , and contains nothing else, i.e., Aυ
S ∶= {γ ∈M∗S ∣∃σ ∈ES such that γ is an alignment between υ and σ}. An optimal alignment between a trace and a

system is an alignment between this trace and an execution of the system that yields the lowest cost.

DEFINITION 3.6 (OPTIMAL ALIGNMENT).
An optimal alignment between a trace υ ∈A∗ and a system S ∈ S as per a cost function c on legal
moves over S is an alignment γ ∈Aυ

S such that ∀γ ′ ∈Aυ
S ∶ c(γ) ≤ c(γ ′). ⌟

The problem of finding an optimal alignment between a trace and a net system is an optimization
problem. The reader can refer to [Adriansyah et al. 2011] for a solution to this problem. An optimal
alignment between a trace and a net system suggests an execution of the net system with the
‘cheapest’ required deviations from the trace (as per the employed cost function), i.e., it gives one
among possibly several best fits between the trace and the system. It clearly holds that alignment
γ1 is an optimal alignment between trace ⟨a,c,b,d,f,g⟩ and the system S in Fig. 2 as stdcS(γ1) = 0.
Interestingly, alignment γ4 is an optimal alignment between trace ⟨a,b,c,d,e,x,c,h,a⟩ and S (as per
the standard cost function); there exists no alignment γ between this trace and S such that stdcS(γ) < 3.

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:11

Given a trace υ ∈A∗, a system S ∈ S, and a cost function c on legal moves over S, by O
υ
S,c we

denote the set of all optimal alignments between υ and S as per c. It is immediate that for every
two optimal alignments γ,γ ′ ∈Oυ

S,c it holds that c(γ) = c(γ ′). Hence, we define the cost of optimal

alignment between υ and S as per cost function c, denoted by cost[υ ,S,c], as the cost of some
optimal alignment between υ and S as per c, i.e., cost[υ ,S,c] ∶= c(γ), where γ ∈Oυ

S,c. For example,

it holds that Oυ
S,stdc = {γ4,γ5} and cost[υ ,S,stdc] = 3, where υ ∶= ⟨a,b,c,d,e,x,c,h,a⟩, S is the system

in Fig. 2, and γ4 and γ5 are two out of the five alignments listed in the beginning of this section. The
reader can refer to [Adriansyah 2014] for a solution to the problem of finding all optimal alignments
between a trace and a system.

Finally, the cost of optimal alignment between an event log L ∈B(A∗) and a net system S ∈ S is
the sum of costs of optimal alignments between each trace in L and S.

DEFINITION 3.7 (COST OF OPTIMAL ALIGNMENT).
The cost of optimal alignment between an event log L ∈B(A∗) and a net system S ∈ S as per a cost
function c on legal moves over S is denoted by cost[L,S,c] and equals ∑υ∈L (L(υ)×cost[υ ,S,c]). ⌟
The cost of optimal alignment between an event log and a net system can be used as a basis
for measuring fitness between the event log and the net system. Intuitively, the lower the cost of
optimal alignment, the better the event log fits the net system. For example, one can conclude that
event log L1 fits the net system S in Fig. 2 better than event log L2 based on the observation that
cost[L1,S,stdc] < cost[L2,S,stdc]. Indeed, it holds that cost[L1,S,stdc] = 10×0+7×0+5×0 = 0 and
cost[L2,S,stdc] = 25×0+15×3 = 45 (note for the multiplicities of traces in the event log).

There are various ways to convert the cost of an optimal alignment [van der Aalst et al. 2012;
Adriansyah 2014] into a fitness value in-between 0 (poor fitness) and 1 (perfect fitness). For example,
one can take the costs of undesirable moves, i.e., non-synchronous moves, and divide that by the
potential costs of all moves in the alignment. It is also possible to take the cost of an optimal
alignment and divide that by the cost of a worst case scenario where we have no synchronous moves,
i.e., all events in the log correspond to moves on trace and the system proceeds to the end by just
using moves on system. In the paper, we abstract from the fitness calculation and focus on the cost
of an optimal alignment. However, intuitively it should be clear that lower optimal alignment costs
correspond to higher fitness.

The optimal alignment cost of zero as per the standard cost function is an indicator of a perfectly
fitting event log.

LEMMA 3.8 (PERFECTLY FITTING EVENT LOG, LEMMA 1 IN [VAN DER AALST 2013]).
An event log L ∈B(A∗) fits perfectly a net system S ∈ S iff cost[L,S,stdcS] = 0. ⌟
The proof of Lemma 3.8 revolves around the fact that the standard cost function assigns zero costs
only to synchronous moves and moves on system that are defined for silent transitions, which are the
only permissible moves of an optimal alignment between a trace in a perfectly fitting event log and
the net system, cf. [van der Aalst 2013].

4. MODEL REPAIR

In process mining, model repair refers to the following problem: Given an event log L that does not
fit a model of a distributed system S, e.g., a net system, transform S into S′ such that L fits S′ ‘better’
than it fits S. Thus, model repair allows keeping models in sync with observed process instances by
suggesting mechanisms for reflecting traces encountered in event logs in executions of models.

This section contributes to the body of knowledge on model repair by introducing the notions of
a repair recommendation, an (optimal) alignment-based repair of a model based on a given repair
recommendation, and a naı̈ve repair of a model. While a repair recommendation can be seen as an
abstract specification of what should be repaired in a model, an alignment-based repair of a model
based on a given event log and a repair recommendation is any transformation of the model into its
repaired version that guarantees that the recommended repairs are fulfilled and the event log fits the
repaired model at least as ‘good’ as it fits the original model; an optimal repair recommendation

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:12 A. Polyvyanyy et al.

in addition requires that the fact that the repair recommendation is fulfilled is evidenced in optimal
alignments between traces in the event log and the repaired version of the original model. Finally,
a naı̈ve repair of a model is a model transformation that can be used to perform alignment-based
repairs. This repair is based on simple model transformation rules, hence the name, and attempts to
keep changes to the original model minimal.

In some abstract sense, a model of a system can be seen as a collection of rules that guide
occurrences of (observable) activities. In this light, a repair of a model of a system S w.r.t. an event
log L is a transformation of rules of S that results in a new model S′ that modifies the rules of S
to allow executing certain activities in those contexts seen in L but not captured in S and skipping
(omitting) execution of certain activities in those contexts captured in S but not seen in L. At this
level of abstraction, every repair of model S can be characterized by two sets of labels Rins and Rskp

that represent those activities to insert and those to skip in the process instances of S, respectively,
in order to obtain all the process instances of S′. To formally capture this characteristic of a model
repair, we introduce the notion of a repair recommendation.

DEFINITION 4.1 (REPAIR RECOMMENDATION).
A repair recommendation is a pair R ∶= (Rins,Rskp), where Rins ⊆A and Rskp ⊆A are finite sets of
labels recommended for insertion and skipping, respectively. ⌟
Note that a repair recommendation does not specify the exact points in the net where repairs must be
applied, but captures which issues should be addressed in a model repair exercise.

When solving a model repair problem, one can rely on different measures for assessing fitness
between event logs and models, e.g., the cost of optimal alignment, cf. Definition 3.7. In [Fahland
and van der Aalst 2015], the authors propose a technique that given an event log L and a net system
S uses optimal alignments between traces in L and executions of S to automatically repair S. This
technique relies on net system transformations that insert subprocesses, introduce loops, and remove
unused or rarely used parts in net systems.

From the point of view of an external observer, a model that is claimed to be a repaired version of
a given model w.r.t. some event log should, intuitively, result in alignments between traces in the
event log and executions of the repaired model that contain less costly moves on trace and moves
on system (defined for observable transitions) than alignments between traces in the event log and
executions of the original model; as, indeed, these moves signify deviations between observed and
modeled process instances. One can implement the above intuition for the comparison of alignments
by comparing alignment costs, if these costs are computed as per some cost function that assigns
zero costs to all moves that do not stand for a deviation. The lower the cost of an alignment the better
is the match between the observed and modeled process instance. Another useful observation is that
deviations between a trace and an execution of a net system stem from the inability of one of the
artifacts to mimic an event or activity, i.e., an observed label, of the other artifact and, thus, they are
independent of identities of the underlying transition occurrences. Considering the above and for the
sake of simplifying the subsequent discussions, it is convenient to lift the concept of the cost function
on legal moves from costs of individual transition occurrences to costs of observed labels.

DEFINITION 4.2 (COST OF LABEL MOVES).
A cost function on label moves for events X ⊆A and activities Y ⊆A is a function f ∶ (X×{≫})∪
({≫}×Y)→ N. The cost function on legal moves over a net system S ∶= (N,Mini,Mfin) ∈ S, N ∶=
(P,T,F,λ), induced by a cost function on label moves f ∶ (X ×{≫})∪({≫}×Y)→N is the function
c ∶MS→N0 such that for every (x,y) ∈MS it holds that c(x,y) = f (x,≫) if x ∈ X and y =≫; c(x,y) =
f (≫,λ(y)) if x =≫, y ∈ T , and λ(y) ∈Y ; otherwise c(x,y) = 0. ⌟
The cost function on legal moves induced by a cost function on label moves implements the
above intuition by ensuring that costs of all the synchronous moves are equal to zero, and any two
moves on system that are defined for transitions that ‘carry’ the same label have the same cost.
The standard cost function on label moves for events X ⊆A and activities Y ⊆A is the function
stdf ∶ (X ×{≫})∪({≫}×Y)→ {1}. Note that one can employ the standard cost function on label

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:13

moves for events and activities Z ∶= {a,b,c,d,e,f,g,h,x} to induce the standard cost function on
legal moves over the net system in Fig. 2 (under the assumption that A = Z).

Every repair of a model is a transformation, but not every transformation is a repair! We define the
notion of repair that relies on the (optimal) alignment when assessing fitness as follows.

DEFINITION 4.3 ((OPTIMAL) ALIGNMENT-BASED REPAIR).
A net system S′ ∶= (N,Mini,Mfin) ∈ S, N ∶= (P,T,F,λ), is the result of an alignment-based repair of
a net system S w.r.t. an event log L ∈B(A∗) as per a cost function on label moves f using a repair
recommendation R ∶= (Rins,Rskp) if and only if there exists a function ψ that maps every trace υ ∈ L
to an alignment in A

υ
S′

such that:

(i) L fits S′ at least as ‘good’ as it fits S, i.e., for every trace υ ∈L it holds that
(c′○ψ)(υ) ≤ cost[υ ,S,c], where c and c′ are the cost functions on legal moves over S and S′

induced by f , respectively, and

(ii) S′ fulfills R, i.e., for every trace υ ∈L it holds that:
○ for every label x∈Rins alignment ψ(υ) contains no move on trace (x,≫), and
○ for every label y∈Rskp alignment ψ(υ) contains no move on system from the set
{(≫,t)∈{≫}×T ∣λ(t) = y},

Note that S′ is the result of an optimal alignment-based repair of S if and only if ψ maps every trace
υ ∈ L to an optimal alignment in O

υ
S′,c′

. ⌟
We say that function ψ justifies the fact that S′ is the result of an (optimal) alignment-based repair of
S. Clearly, every optimal alignment-based repair is an alignment-based repair, while the converse
does not necessarily always hold. An alignment-based repair of a system S transforms S into a
repaired system S′ in such a way that for every trace υ ∈ L one can find an alignment between υ and
S′ which has an alignment cost equal to or lower than the cost of optimal alignment between υ and S,
and which contains no moves that are recommended for repair by R. One consequence of the above
observations is that every alignment-based repair of a system guarantees that the optimal alignment
between the event log and the repaired system is at least as ‘good’ as the optimal alignment between
the event log and the original system.

COROLLARY 4.4 (ALIGNMENT-BASED REPAIR).
If a net system S′ ∈ S is the result of an alignment-based repair of a net system S ∈ S w.r.t. an event
log L ∈B(A∗) as per a cost function on label moves f using a repair recommendation, then it holds
that cost[L,S′,c′] ≤ cost[L,S,c], where c and c′ are the cost functions on legal moves over S and S′

induced by f , respectively. ⌟
The proof of Corollary 4.4 can be found in Appendix A.

Two elementary repairs on net systems proposed in [Fahland and van der Aalst 2015] are the
self-loop injection and the skip injection.

DEFINITION 4.5 (SELF-LOOP AND SKIP INJECTIONS).
Let S ∶= (N,Mini,Mfin) ∈ S, N ∶= (P,T,F,λ), be a net system.
○ A net system S′ ∶= (N′,Mini,Mfin) ∈ S, N′ ∶= (P,T ′,F ′,λ ′), is the result of self-loop injections in

S for a label a ∈A at places in X ⊆ P if and only if there exists a set Y , for which it holds that
(P∪T)∩ Y = ∅, and a bijective function f ∶ X →Y such that T ′ = T ∪ Y , F ′ = F ∪ f ∪ f−1, and
λ ′ = λ ∪{(y,a)∣y ∈Y}.
○ A net system S′ ∶= (N′,Mini,Mfin) ∈ S, N′ ∶= (P,T ′,F ′,λ ′), is the result of skip injections in S for

transitions in X ⊆ T if and only if there exists a set Y , for which it holds that (P∪T)∩Y =∅, and a
bijective function f ∶ X →Y such that T ′ = T ∪Y , F ′ = F ∪{(p,y) ∈ P×Y ∣∃x ∈ X ∶ p ∈ ●x∧ f (x) =
y}∪{(y, p) ∈Y ×P∣∃x ∈ X ∶ f (x) = y∧ p ∈ x●}, and λ ′ = λ ∪{(y,τ)∣y ∈Y}. ⌟

The system in Fig. 3(b) is the result of self-loop injections in the system in Fig. 3(a) for label x at
places in {p3}, while the system in Fig. 3(d) is the result of skip injections in the system in Fig. 3(b)
for transitions in {t4}. It is easy to see that different orders of the same repertoire of injections lead to
the same resulting net system. For example, one indeed obtains the net system in Fig. 3(d) as the

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:14 A. Polyvyanyy et al.

a

p1
t1 p2

b c

d e

p3

p4

p5

t2 t3

t4 t5

(a) S1

a

p1
t1 p2

b c

d e

p3

p4

p5

t2 t3

t4 t5

x t6

(b) S2

a

p1
t1 p2

b c

d e

p3

p4

p5

t2 t3

t4 t5

t6

(c) S3

a

p1
t1 p2

b c

d e

p3

p4

p5

t2 t3

t4 t5

x t6

t7

(d) S4

Fig. 3: Four net systems: (a) S1, (b) S2 is the result of self-loop injections in S1 for label x at places
in {p3}, (c) S3 is the result of skip injections in S1 for transitions in {t4}, and (d) S4 is the result of
skip injections in S2 for transitions in {t4}.
result of self-loop injections in the net system in Fig. 3(c) for label x at places in {p3}, where the net
system in Fig. 3(c) is the result of skip injections in the net system in Fig. 3(a) for transitions in {t4}.
Note that all the ‘injected’ transitions are highlighted with grey background in Figs. 3(a)–3(d).

One can repair a net system S w.r.t. a given event log L by injecting (i) self-loops for those labels
for which there exist moves on trace and (ii) skips for those observable transitions of S for which
there exist moves on system in optimal alignments between traces in L and S, cf. [Fahland and van der
Aalst 2015]. However, it is a challenging task to decide which injections (out of all possible ones) to
introduce as many of them may be redundant. The approach we take in this work to decide which
self-loop and/or skip injections to apply in a given net system requires the reader to become familiar
with the notion of a minimal hitting set. Given a collection of sets C, a set which intersects all sets in C
in at least one element is called a hitting set of C. Given the set of sets D ∶= {{1,2,5},{2,4,5},{2,3}},
the sets {2}, {3,5}, and {1,3,4} are examples of hitting sets of D. A hitting set of smallest size is
known as a minimal hitting set. By mhs, we denote a function that maps every collection of sets to
one of its minimal hitting sets. For example, it holds that mhs(D) = {2}. The problem of finding a
minimal hitting set is equivalent to the set covering problem, which is shown to be NP-complete
in [Karp 1972]. This problem can be solved using the technique proposed in [Wotawa 2001].

We are now in a position to propose the notion of a naı̈ve repair of a net system.

DEFINITION 4.6 (NAÏVE REPAIR).
A net system S′∈S is the result of a naı̈ve repair of a net system S ∶= (N,Mini,Mfin) ∈S, N∶=(P,T,F,λ),
based on the alignments in the image of a function φ , which maps every trace υ in an event log
L ∈ B(A∗) to some alignment in A

υ
S , using a repair recommendation R ∶= (Rins,Rskp) if and only

if there exist two sequences of labels α ∶= ⟨α1,α2, . . . ,αn⟩ and β ∶= ⟨β1,β2, . . . ,βm⟩, for which it
holds that Set(α) = Rins, ∣α ∣ = ∣Rins∣, Set(β) = Rskp, and ∣β ∣ = ∣Rskp∣, and a sequence of systems
⟨S0,S1, . . . ,Sn,Sn+1, . . . ,Sn+m⟩ such that S0 = S, Sn+m = S′, for every Si, i ∈ [1..n], it holds that Si

is the result of self-loop injections in Si−1 for label αi at places in mhs({X ⊆ P∣∃M ∈ B(P)∃υ ∈

L∃ k ∈ [1..∣φ(υ)∣] ∶X = Set(M)∧(N,Mini)[((π2 ○φ)(υ))[k−1]∣T ⟩(N,M)∧(φ(υ))k = (αi,≫)}), and
for every Sn+ j, j ∈ [1..m] it holds that it is the result of skip injections in Sn+ j−1 for transitions in
{t ∈ T ∣∃υ ∈ L ∃k ∈ [1..∣φ(υ)∣] ∶ (φ(υ))k = (≫,t)∧λ(t) = β j}. ⌟

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:15

a
p1

c

d

b

f

g

he

t1

t2

t3

t4

t5

t6

t7 t8
t9

t10

t11

p2 p3

p4 p5 p6

p7

p8

p9

p10 p11

t12

t13

t14

x

f

e

t15

t16 t17

Fig. 4: A net system obtained as the result of a naı̈ve repair of the net system in Fig. 2 using repair
recommendation R ∶= ({e,f,x},{c,f,g}).
Note that one can replace the order of injections employed in the above definition with any other
order, as it does not influence the end result.

Fig. 4 shows a net system that is obtained as the result of a naı̈ve repair of the net system
S ∶= (N,Mini,Mfin), N ∶=(P,T,F,λ), in Fig. 2 using repair recommendation R ∶= ({e,f,x},{c,f,g}).
The repair is based on the alignments in the image of function φ that maps traces in event log L3

from Section 2.3 to optimal alignments (as per the standard cost function on legal moves over
S) between these traces and S as follows. Let υ1 ∶= ⟨a,b,c,f,d,e,f⟩, υ2 ∶= ⟨a,c,d,c,e,d,g,f⟩,
υ3 ∶= ⟨a,b,c,d,e,x,c,h,a⟩, υ4 ∶= ⟨c,d,d,f,e,g⟩, υ5 ∶= ⟨a,b⟩, υ6 ∶= ⟨a,b,c,d,e,d,f⟩, and υ7 ∶=
⟨a,b,c,d,e,b,c,d,g⟩. Then, φ ∶= {(υ1,γ

1
0),(υ2,γ

2
0),(υ3,γ

3
0),(υ4,γ

4
0),(υ5,γ

5
0),(υ6,γ

6
0),(υ7,γ

7
0)},

where the optimal alignments γ 1
0 –γ 7

0 are listed below.

γ 1
0 ∶=

a b c f d ≫ e f ≫ ≫

a b c ≫ d τ ≫ f g τ
t1 t2 t4 t5 t7 t8 t9 t11

γ 2
0 ∶=

a c ≫ d c e ≫ ≫ d ≫ g f ≫

a c τ d ≫ e τ c d τ g f τ
t1 t4 t3 t5 t6 t3 t4 t5 t7 t9 t8 t11

γ 3
0 ∶=

a b c d e x c ≫ ≫ h a

a b c d e ≫ c τ d h ≫

t1 t2 t4 t5 t6 t4 t3 t5 t10

γ 4
0 ∶=
≫ c ≫ d ≫ d f e g ≫

a c τ d τ ≫ f ≫ g τ
t1 t4 t3 t5 t7 t8 t9 t11

γ 5
0 ∶=

a b ≫ ≫ ≫

a b c d h

t1 t2 t4 t5 t10

γ 6
0 ∶=

a b c d e ≫ ≫ d ≫ f ≫ ≫

a b c d e τ c d τ f g τ
t1 t2 t4 t5 t6 t3 t4 t5 t7 t8 t9 t11

γ 7
0 ∶=

a b c d e b c d ≫ g ≫ ≫

a b c d e b c d τ g f τ
t1 t2 t4 t5 t6 t2 t4 t5 t7 t9 t8 t11

The fact that the net system in Fig. 4 is the result of a naı̈ve repair of S is justified by the
existence of two sequences of labels α ∶= ⟨e,f,x⟩ and β ∶= ⟨c,f,g⟩ and one sequence of net systems
⟨S0,S1,S2,S3,S4,S5,S6⟩, where S0 = S, S6 is the net system in Fig. 4, S1 is the result of self-loop
injections in S0 for label e at places in {p8}, S2 is the result of self-loop injections in S1 for label
f at places in {p3}, S3 is the result of self-loop injections in S2 for label x at places in {p4}, S4 is
the result of skip injections in S3 for transitions in {t4}, S5 is the result of skip injections in S4 for
transitions in {t8}, and finally S6 is the result of skip injections in S5 for transitions in {t9}.

The places and transitions at which self-loop and for which skip injections, respectively, are
performed in S, were identified based on the alignments γ 1

0 –γ 7
0 . For example, S1 is obtained from S0

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:16 A. Polyvyanyy et al.

as the result of self-loop injections at places in {p8} because it holds that mhs({{p7, p8},{p8, p9}}) ={p8}, where {p7, p8} and {p8, p9} are places that are ‘marked’, i.e., contain at least one token, in the
markings [p7, p8] and [p8, p9], which are the markings that are reachable from Mini via occurrence
sequences σ1 ∶= ⟨t1,t2,t4,t5,t7⟩ and σ2 ∶= ⟨t1,t4,t3,t5,t7,t8⟩ in N, respectively. Note that it holds that

σ1 = ((π2 ○φ)(υ1))[6]∣T and σ2 = ((π2 ○φ)(υ4))[7]∣T ; the 6-th and 7-th prefix are used because γ1
0

and γ4
0 contain move on trace (e,≫) at positions 7 and 8, respectively. Note also that S4 is the result

of skip injections in S3 for transitions in {t4} because of the existence of trace υ2 which contains
move on system (≫,t4) such that λ(t4) = c, and there exists no other transition t ∈ T , t ≠ t4, for which
some of the seven alignments proposed above contains move on system (≫,t) and λ(t) = c.

The above examples reveal the rationale behind the design of the notion of a naı̈ve repair, which is
to perform the least number of self-loop and/or skip injections possible for every move on trace and/or
every move on system observed in the given collection of alignments and defined on labels that are
recommended for repair. The injections guarantee that moves on trace and/or moves on system that
are requested to be repaired can be mimicked by the repaired net system and/or trace, respectively, in
the alignments that follow similar paths through the repaired net system as the alignments that were
used to perform the naı̈ve repair.

Let c be the cost function on legal moves over the net system S shown in Fig. 2 induced
by the standard cost function stdf on label moves for events Z ∶= {a,b,c,d,e,f,g,h,x} and
activities Z ∖ {x}. Then, c is the standard cost function on legal moves over system S for
which it holds that c= (Z×{≫})×{1}∪ ({≫}×{t3,t7,t11})×{0}∪ ({≫}×(T∖{t3,t7,t11}))×{1}∪{((a,t1),0),((b,t2),0),((c,t4),0),((d,t5),0),((e,t6),0),((f,t8),0),((g,t9),0),((h,t10),0)}. Using the op-

timal alignments γ 1
0 –γ 7

0 proposed above, the reader can now verify that cost[υ1,S,c] = 3,
cost[υ2,S,c] = 2, cost[υ3,S,c] = 3, cost[υ4,S,c] = 3, cost[υ5,S,c] = 3, cost[υ6,S,c] = 2, and
cost[υ7,S,c] = 1. Thus, cost[L3,S,c] = 10×3+9×2+9×3+7×3+6×3+2×2+2×1 = 120.

Let c′ be the cost function on legal moves over the net system S′ in Fig. 4 in-
duced by stdf . Then, c′ is the standard cost function on legal moves over S′ for which
it holds that c′ = c ∪ ({≫} × {t14,t15,t17}) × {0} ∪ ({≫} × {t12,t13,t16}) × {1} ∪ {((x,t12),0),((f,t13),0),((e,t16),0)}. The reader can find an optimal alignment between every trace in L3

and S′ as per cost function c′ listed below.

γ 1
1 ∶=

a b c f d ≫ e f ≫ ≫

a b c f d τ e f τ τ
t1 t2 t4 t13 t5 t7 t16 t8 t17 t11

γ 2
1 ∶=

a c ≫ d c e ≫ ≫ d ≫ g f ≫

a c τ d ≫ e τ τ d τ g f τ
t1 t4 t3 t5 t6 t3 t14 t5 t7 t9 t8 t11

γ 3
1 ∶=

a b c d e x c ≫ ≫ h a

a b c d e x c τ d h ≫

t1 t2 t4 t5 t6 t12 t4 t3 t5 t10

γ 4
1 ∶=
≫ c ≫ d ≫ d f e g ≫

a c τ d τ ≫ f e g τ
t1 t4 t3 t5 t7 t8 t16 t9 t11

γ 5
1 ∶=

a b ≫ ≫ ≫ ≫ ≫ ≫

a b τ d τ τ τ τ
t1 t2 t14 t5 t7 t15 t17 t11

γ 6
1 ∶=

a b c d e ≫ ≫ d ≫ f ≫ ≫

a b c d e τ τ d τ f τ τ
t1 t2 t4 t5 t6 t3 t14 t5 t7 t8 t17 t11

γ 7
1 ∶=

a b c d e b c d ≫ g ≫ ≫

a b c d e b c d τ g τ τ
t1 t2 t4 t5 t6 t2 t4 t5 t7 t9 t15 t11

Using the optimal alignments γ 1
1 –γ 7

1 shown above, the reader can easily verify that indeed
cost[υ1,S

′
,c′] = 0, cost[υ2,S

′
,c′] = 1, cost[υ3,S

′
,c′] = 2, cost[υ4,S

′
,c′] = 2, cost[υ5,S

′
,c′] = 1,

cost[υ6,S
′
,c′] = 0, and cost[υ7,S

′
,c′] = 0. Thus, it holds that cost[L3,S

′
,c′] = 10× 0+ 9× 1+ 9×

2+7×2+6×1+2×0+2×0 = 47.
Six out of seven alignments γ 1

1 –γ 7
1 proposed above follow paths in the repaired model that are

similar to those followed by alignments γ 1
0 –γ 7

0 in the original model. For example, alignment

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:17

γ 1
1 follows a path that is similar to that followed by γ 1

0 as one can construct alignment γ 1
1 from

alignment γ 1
0 by replacing moves (f,≫), (e,≫), and (≫,t9), with moves (f,t13), (e,t16), and

(≫,t17), respectively, i.e., with moves that are defined for the transitions injected in the repaired

model. Note that alignment γ 5
1 does not follow the path of alignment γ 5

0 as, due to the repair, there
exists a more optimal alignment that follows the path via injected transitions t15 and t17.

Let S′ ∈ S be the result of a naı̈ve repair of a net system S ∈ S based on a set of alignments Γ. Then,
for every alignment γ ∈ Γ there exists a unique alignment that follows a path in S′ that is similar to
the path followed by γ in S. We denote this alignment by similar[γ,S,S′]. For example, it holds that

similar[γ1
0 ,S,S

′] = γ1
1 , where S and S′ are net systems in Fig. 2 and Fig. 4, respectively.

The net system S′ ∶= (N′,Mini,Mfin), N′ ∶= (P,T ′,F ′,λ ′), in Fig. 4 is the result of an op-
timal alignment-based repair of the net system S in Fig. 2, cf. Definition 4.3. Let ψ ∶=
{(υ1,γ

1
1),(υ2,γ

2
1),(υ3,γ

3
1),(υ4,γ

4
1),(υ5,γ

5
1),(υ6,γ

6
1),(υ7,γ

7
1)} be a function that maps traces to

alignments. Then, one can employ function ψ to justify that: (i) L3 fits S′ at least as ‘good’ as
it fits S (and in fact strictly ‘better’ than it fits S) as obviously (c′○ψ)(υ1) < cost[υ1,S,c] (be-
cause 0 < 3), (c′○ψ)(υ2) < cost[υ2,S,c] (1 < 2), (c′○ψ)(υ3) < cost[υ3,S,c] (2 < 3), (c′○ψ)(υ4) <
cost[υ4,S,c] (2 < 3), (c′○ψ)(υ5) < cost[υ5,S,c] (1 < 3), (c′○ψ)(υ6) < cost[υ6,S,c] (0 < 2), and
finally (c′○ψ)(υ7) < cost[υ7,S,c] (0 < 1); note that as one of the consequences of the above ob-
servations it must hold that cost[L3,S

′
,c′] ≤ cost[L3,S,c], cf. Corollary 4.4. In fact, it holds that

cost[L3,S
′
,c′] < cost[L3,S,c] as, indeed, 47 is less than 120. (ii) S′ fulfills repair recommendation

({e,f,x},{c,f,g}), because for every trace υ ∈ L3 it holds that ψ(υ) contains no move (x,≫),
x ∈ {e,f,x}, and no move (≫,y), y ∈ T ′, such that λ′(y) ∈ {c,f,g}.

Not every naı̈ve repair results in an optimal alignment-based repair of the system, even if
performed based on optimal alignments. We demonstrate this using the system S1 in Fig. 3(a), event
log L ∶= [⟨a,b,x,e⟩ ,⟨a,e⟩], cost function on label moves f ∶= {((a,≫),1),((b,≫),1),((e,≫),1),
((x,≫),1),((≫,a),1),((≫,b),1),((≫,c),2),((≫,d),3),((≫,e),1),((≫,x),1)}, and repair
recommendation R ∶= ({x},{d}). The optimal alignments between traces in L and S1 as per the
cost function c on legal moves over S1 induced by f are given below; it holds that c = {((a,≫),1),
((b,≫),1),((e,≫),1),((x,≫),1),((≫,t1),1),((≫,t2),1),((≫,t3),2),((≫,t4),3),((≫,t5),1),((a,t1),0),((b,t2),0),((c,t3),0),((d,t4),0),((e,t5),0)}.

γ 1
2 ∶=

a b x ≫ e

a b ≫ c ≫

t1 t2 t3

γ 2
2 ∶=

a ≫ e

a d e

t1 t4 t5

Alignment γ 1
2 is one out of three optimal alignments between trace ⟨a,b,x,e⟩ and S1, while γ 2

2 is

the only optimal alignment between trace ⟨a,e⟩ and S1. It holds that c(γ 1
2) = 4 and c(γ 2

2) = 3. The

result of a naı̈ve repair of S1 based on optimal alignments γ 1
2 and γ 2

2 using repair recommendation R
is the net system S4 in Fig. 3(d). Let c′ be the cost function on legal moves over S4 induced by f .
Then, it holds that c′ = c ∪{((x,t6),0),((≫,t7),0)}. The optimal alignments between the two traces
in event log L and net system S4 as per cost function c′ are listed below.

γ 1
3 ∶=

a ≫ b x e

a τ ≫ ≫ e

t1 t7 t5

γ 2
3 ∶=

a ≫ e

a τ e

t1 t7 t5

Using these alignments, one can verify that c′(γ 1
3) = 2 and c′(γ 2

3) = 0. Thus, function ψ ∶=
{(⟨a,b,x,e⟩ ,γ 1

3),(⟨a,e⟩ ,γ 2
3)} justifies the fact that L fits S4 at least as ‘good’ as (and in fact ‘better’

than) it fits S1. However, ψ does not justify the fact that S4 fulfills R; note that alignment γ 1
3 contains

move on trace (x,≫) which is recommended for repair by R. Nevertheless, net system S4 is the result

of an alignment-based repair of S1. This is justified by function ψ ′ ∶= {(⟨a,b,x,e⟩ ,γ),(⟨a,e⟩ ,γ 2
3)},

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:18 A. Polyvyanyy et al.

where γ ∶= ⟨(a,t1),(b,t2),(x,t6),(≫,t3),(e,≫)⟩, c′(γ) = 3, is a non-optimal alignment between trace

⟨a,b,x,e⟩ and S4; note that γ follows a path that is similar to the path of γ 1
2 .

In fact, every naı̈ve repair of a given net system based on a collection of optimal alignments always
results in an alignment-based repair; one can justify this fact using a function that maps traces to
alignments that follow similar paths as those followed by the optimal alignments. This observation is
crystallized in the next statement, the proof of which can be found in Appendix A.

LEMMA 4.7 (ALIGNMENT-BASED REPAIR).
If a net system S′ ∈ S is the result of a naı̈ve repair of a net system S ∈ S based on the alignments in the
image of a function φ , which maps every trace υ in an event log L∈B(A∗) to an optimal alignment
in O

υ
S,c, using a repair recommendation R, where c is the cost function on legal moves over S induced

by a cost function on label moves f , then S′ is the result of an alignment-based repair of S w.r.t.
L as per f using R. ⌟
5. OPTIMAL MODEL REPAIR RECOMMENDATION

In this section, we define and motivate a new problem in process mining—the problem of optimal
model repair recommendation, which refers to the following problem: Given a model of a distributed
system S, e.g., a net system, and an event log L that does not fit S, among all possible repair recom-
mendations, cf. Definition 4.1, that satisfy some given constraint C find a repair recommendation R
such that a model S′ obtained by repairing S using (and fulfilling) R is such that L fits S′ at least as
‘good’ as it fits any other model obtained by repairing S using any other repair recommendation that
satisfies C. Note that finding a solution to an optimal model repair recommendation problem is not
about constructing a repaired version of a given model, but is rather about identifying a repair recom-
mendation that when implemented in the given model, e.g., as some transformation of the model,
will have the best impact on fitness. Furthermore, this section demonstrates that naı̈ve repairs can be
used to implement optimal alignment-based repairs when are based on optimal alignments as per a
special cost function on legal moves. Finally, this section introduces the notion of an optimal repair
recommendation, i.e., a recommendation that when used to perform an optimal alignment-based
repair of a model leads to a repaired model that has the ‘best’ fit with the given event log.

The problem of optimal model repair recommendation is an optimization problem of finding
the best repair recommendation from all feasible repair recommendations. One can often assess
the feasibility of a solution to an optimization problem by associating it with a numeric value and
comparing this value with a given threshold. We rely on the concept of a repair constraint to induce
the set of all feasible repair recommendations.

DEFINITION 5.1 (REPAIR CONSTRAINT).
A repair constraint is a triple C ∶= (Cins,Cskp,res), where Cins ∶A→N0 and Cskp ∶A→N0 are functions
that assign costs of inserting and skipping activities to labels, respectively, and res ∈N0 is the amount
of available repair resources. ⌟
Functions Cins and Cskp specify the costs of including labels into a repair recommendation. A repair
constraint is standard iff both images of Cins and Cskp are equal to {1}.

Given a repair recommendation R ∶= (Rins,Rskp) and a repair constraint C ∶= (Cins,Cskp,res), by
cost[R,C], we denote the cost of R as per repair constraint C, which is defined as cost[R,C] ∶=
∑r∈Rins

Cins(r)+∑r∈Rskp
Cskp(r). Then, R is a feasible solution to an optimal model repair recommen-

dation problem restricted by C if it holds that its cost does not exceed available repair resources,
i.e., cost[R,C] ≤ res. Thus, one can rely on the notion of a repair constraint to formulate an optimal
model repair recommendation problem to search for a repair recommendation within the available
repair resources that has the best impact on fitness between the event log and the repaired model.

We have observed that one can simulate the effect of an alignment-based repair of a net system
S ∈ S w.r.t. an event log L ∈ B(A∗) as per some cost function on label moves f using a repair
recommendation R without performing actual transformations on S. Indeed, by setting costs of
certain moves in the cost function on legal moves induced by f to be equal to zero one eliminates the

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:19

a

p1
t1 p2

b c

d e

p3

p4

p5

t2 t3

t4 t5

t7

x t6

Fig. 5: Net system S5.

effect of these moves on the costs of optimal alignments between traces in L and S in a similar way
as if S has been transformed to cater for these moves. Consequently, in order to simulate the effect of
performing an alignment-based repair of S using R, one needs to ‘adjust’ the costs of all the moves
that are recommended for repair by R. This can be accomplished using the notion of the adjusted
cost function proposed below.

DEFINITION 5.2 (ADJUSTED COST OF LABEL MOVES).
The adjusted cost function on label moves induced by a cost function on label moves f for events
X ⊆A and activities Y ⊆A using a repair recommendation R ∶= (Rins,Rskp) is the restriction of f to
((X ∖Rins)×{≫})∪({≫}×(Y ∖Rskp)), denoted by f ∣R. ⌟
Let L ∈B(A∗) be an event log, let R be a repair recommendation, and let f be a cost function on label
moves. An optimal alignment between a trace υ ∈ L and a net system S ∈ S as per the cost function c
on legal moves over S induced by f ∣R hints at the fact that one can use R to repair S into a fresh net
system S′ such that the cost of optimal alignment between υ and S′ as per the cost function on legal
moves over S′ induced by f is as good as the cost of optimal alignment between υ and S as per c.
The next statement justifies this fact by pointing to one such repair.

THEOREM 5.3 (OPTIMAL ALIGNMENT-BASED REPAIR).
If a net system S′ ∈ S is the result of a naı̈ve repair of a net system S ∈ S based on the alignments in
the image of a function φ using a repair recommendation R, where φ maps every trace υ in an event
log L∈B(A∗) to an alignment in O

υ
S,c, c is the cost function on legal moves over S induced by f ∣R, f

is a cost function on label moves, then S′ is the result of an optimal alignment-based repair of S w.r.t.
L as per f using R. ⌟
The proof of Theorem 5.3 can be found in Appendix A.

We exemplify implications of Theorem 5.3 by extending the discussion of the example proposed at
the end of Section 4. Let f ∶= {((a,≫),1),((b,≫),1),((e,≫),1),((x,≫),1),((≫,a),1),((≫,b),1),
((≫,c),2),((≫,d),3),((≫,e),1),((≫,x),1)} be a cost function on label moves. Net system S5 in
Fig. 5 is the result of a naı̈ve repair of net system S1 in Fig. 3(a) based on the alignments in the
image of function φ ∶= {(⟨a,b,x,e⟩ ,γ 1

4),(⟨a,e⟩ ,γ 2
4)} using repair recommendation R ∶= ({x},{d});

the ‘injected’ transitions are highlighted with grey background in the figure.

γ 1
4 ∶=

a ≫ b x e

a d ≫ ≫ e

t1 t4 t5

γ 2
4 ∶=

a ≫ e

a d e

t1 t4 t5

Alignments γ 1
4 and γ 2

4 shown above are two optimal alignments constructed between two traces
⟨a,b,x,e⟩ and ⟨a,e⟩ and the system S1 in Fig. 3(a) as per the cost function c on legal moves over S1

induced by f ∣R. Note that it holds that f ∣R equals {((a,≫),1),((b,≫),1),((e,≫),1),((≫,a),1),
((≫,b),1),((≫,c),2),((≫,e),1),((≫,x),1)}. Thus, according to Definition 4.2, c={((a,≫),1),
((b,≫),1),((e,≫),1),((x,≫),0),((≫,t1),1),((≫,t2),1),((≫,t3),2),((≫,t4),0),((≫,t5),1),
((a,t1),0),((b,t2),0),((c,t3),0),((d,t4),0),((e,t5),0)}, and c(γ 1

4) = 1 and c(γ 2
4) = 0.

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:20 A. Polyvyanyy et al.

Note that net system S5 in Fig. 5 is, indeed, the result of a naı̈ve repair of S1 ∶= (N,Mini,Mfin),
N ∶= (P,T,F,λ), as it is the result of skip injections for transitions in {t4} in the net system that, in
turn, is obtained as the result of self-loop injections in S1 for label x at places in {p4}. The self-loop
injections for label x are performed at places in {p4} because there exist marking [p4] and only

one alignment γ 1
4 in the image of φ with only one move on trace (x,≫) at position 4 such that

π2(γ 1
4)[3]∣T = ⟨t1,t4⟩, (N,Mini)[⟨t1,t4⟩⟩(N,[p4]), Set([p4]) = {p4}, and mhs({{p4}}) = {p4}. The

skip injections are performed for transitions in {t4}, because the two moves on system (≫,t4),
λ(t4) = d, both at position 2 in optimal alignments γ 1

4 and γ 2
4 , are the only moves on system defined

for label d in all the alignments in the image of φ .
Thus, according to Theorem 5.3, S5 is the result of an optimal alignment-based repair of S1 w.r.t.

L ∶= [⟨a,b,x,e⟩ ,⟨a,e⟩] as per f using R. One can use function ψ ∶= {(⟨a,b,x,e⟩ ,γ 1
5),(⟨a,e⟩ ,γ 2

5)}
to justify this claim, where γ 1

5 and γ 2
5 are optimal alignments between traces in L and S5 listed below.

γ 1
5 ∶=

a ≫ b x e

a τ ≫ x e

t1 t7 t6 t5

γ 2
5 ∶=

a ≫ e

a τ e

t1 t7 t5

One can easily verify that (i) g′(γ 1
5) < g(γ 1

2) because 1 < 4 and g′(γ 2
5) < g(γ 2

2) because 0 < 3, where
g and g′ are the cost functions on legal moves over S1 and S5 induced by f , respectively, and, thus,
L fits S5 at least as ‘good’ as (and in fact ‘better’ than) it fits S1, and (ii) S5 fulfills R as neither γ 1

5

nor γ 2
5 contain moves that are recommended for repair by R. Note that alignments γ 1

5 and γ 2
5 follow

paths in S5 that are similar to those followed by alignment γ 1
4 and γ 2

4 in S1, respectively.
As demonstrated above, one can use adjusted cost functions to ‘guide’ optimal alignment-based

repairs of net systems. We also use adjusted cost functions to define the concept of an optimal
alignment-based repair recommendation.

DEFINITION 5.4 (OPTIMAL REPAIR RECOMMENDATION).
An optimal repair recommendation for a net system S ∈ S w.r.t. an event log L ∈ B(A∗) as
per a cost function on label moves f restricted by a repair constraint C ∶= (Cins,Cskp,res) is a repair
recommendation R such that cost[R,C]≤ res and for every repair recommendation X , cost[X ,C]≤ res,
it holds that cost[L,S,cR] ≤ cost[L,S,cX], where cR and cX are the cost functions on legal moves
over S induced by f ∣R and f ∣X , respectively. ⌟
An optimal repair recommendation R ∶= (Rins,Rskp) for S w.r.t. L as per f restricted by C is said to be
minimal iff there exists no other optimal repair recommendation X ∶= (Xins,Xskp) for S w.r.t. L as per
f restricted by C such that Xins ⊆ Rins and Xskp ⊆ Rskp and X ≠ R. By R[S,L, f ,C] and Rmin[S,L, f ,C],
we denote the set of all optimal and the set of all minimal optimal repair recommendations for S w.r.t.
L as per f restricted by C, respectively.

Let f be a cost function on label moves. A feasible repair recommendation R under the given
constraint C is optimal for a net system S if there exist no other feasible repair recommendation X
under C for which the cost of optimal alignment between the given event log L and S as per the
cost function on legal moves over S induced by f ∣X is ‘cheaper’ than the cost of optimal alignment
between L and S as per the cost function on legal moves over S induced by f ∣R. Note that the cost of
optimal alignment between L and S as per the cost function on legal moves induced by f ∣R can be
used to determine the cost of optimal alignment between L and the repaired version of S as per the
cost function on legal moves induced by f .

LEMMA 5.5 (OPTIMAL ALIGNMENT-BASED REPAIR).
If a net system S′ ∈ S is the result of a naı̈ve repair of a net system S ∈ S based on the alignments in
the image of a function φ using a repair recommendation R, where φ maps every trace υ in an event
log L∈B(A∗) to an alignment in O

υ
S,c, c is the cost function on legal moves over S induced by f ∣R,

and f is a cost function on label moves, then it holds that cost[L,S,c] = cost[L,S′,c′], where c′ is the
cost function on legal moves over S′ induced by f . ⌟

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:21

a
p1

c

d

b

f

g

he

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11
p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

t13

t12

f

x

t14

f
t15

t16

t17

t18

Fig. 6: A net system obtained as the result of a naı̈ve repair of the net system in Fig. 2 using repair
recommendation R ∶= ({f,x},{d,e,c,h}).
The proof of Lemma 5.5 can be found in Appendix A.

Finally, if one performs an optimal alignment-based repair w.r.t. a given event log L using an
optimal repair recommendation, then one obtains a repaired model that exhibits the best cost of
optimal alignment with L among all the costs of optimal alignments between L and models that are
obtained as alignment-based repairs using feasible repair recommendations.

COROLLARY 5.6 (OPTIMAL ALIGNMENT-BASED REPAIR).
If a net system S′ ∈ S is the result of a naı̈ve repair of a net system S ∈ S based on the alignments in
the image of a function φ using a repair recommendation R ∈R[S,L, f ,C], where f is a cost function
on label moves, φ maps every trace υ in an event log L∈B(A∗) to an alignment in O

υ
S,c, c is the cost

function on legal moves over S induced by f ∣R, and C ∶= (Cins,Cskp,res) is a repair constraint, then for
every repair recommendation X such that cost[X ,C] ≤ res it holds that cost[L,S′,c′] ≤ cost[L,S′′,c′′],
where S′′ ∈ S is the result of a naı̈ve repair of S based on φ using X, c′ is the cost function on legal
moves over S′ induced by f , and c′′ is the cost function on legal moves over S′′ induced by f . ⌟
Corollary 5.6 follows immediately from Definition 5.4 and Lemma 5.5.

Let C ∶= (Cins,Cskp,6) be the standard repair constraint defined under the assumption that A =
{a,b,c,d,e,f,g,h,x}. Then, ({f,x},{d,e,c,h}) ∈ Rmin[S,L3, f ,C], where S is the net system in
Fig. 2, L3 is the event log from Section 2.3, and f is the standard cost function on label moves for
events and activities A.

Fig. 6 shows system S′′ obtained as a result of a naı̈ve repair of net system S in Fig. 2 using minimal
optimal repair recommendation R ∶= ({f,x},{d,e,c,h}); the ‘injected’ transitions are highlighted
with grey background. This repair is performed based on optimal alignments between traces in L3

and S as per the cost function on legal moves over S induced by f . Optimal alignments between
traces in L3 and S′′ as per the cost function c on legal moves over S′′ induced by f are listed below.

γ 1
6 ∶=

a b c f d e ≫ f ≫ ≫ ≫

a b c f d e τ f τ τ τ
t1 t2 t4 t13 t5 t6 t16 t13 t3 t17 t18

γ 2
6 ∶=

a c ≫ d ≫ c ≫ ≫ e ≫ ≫ d ≫ g f ≫

a c τ d τ c τ τ e τ τ d τ g f τ
t1 t4 t3 t5 t15 t4 t3 t17 t6 t3 t16 t5 t7 t9 t8 t11

γ 3
6 ∶=

a b c d e x c ≫ ≫ h a

a b c d e x c τ τ h ≫

t1 t2 t4 t5 t6 t12 t4 t3 t17 t10

γ 4
6 ∶=
≫ c ≫ d ≫ ≫ ≫ d ≫ f e g ≫

a c τ d τ τ τ d τ f ≫ g τ
t1 t4 t3 t5 t15 t3 t16 t5 t7 t8 t9 t11

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:22 A. Polyvyanyy et al.

γ 5
6 ∶=

a b ≫ ≫ ≫

a b τ τ τ
t1 t2 t16 t17 t18

γ 6
6 ∶=

a b c d e ≫ ≫ d ≫ f

a b c d e τ τ d τ f

t1 t2 t4 t5 t6 t3 t16 t5 t18 t14

γ 7
6 ∶=

a b c d e b c d ≫ g

a b c d e b c d τ ≫
t1 t2 t4 t5 t6 t2 t4 t5 t18

One can verify that c(γ 1
6) = 0, c(γ 2

6) = 0, c(γ 3
6) = 1, c(γ 4

6) = 2, c(γ 5
6) = 0, c(γ 6

6) = 0, and c(γ 7
6) = 1,

and, thus, it holds that cost[L3,S
′′
,c] = 10×0+9×0+9×1+7×2+6×0+2×0+2×1 = 25. According

to Corollary 5.6, there exists no feasible repair recommendation X under C such that for net system S̄
obtained as the result of a naı̈ve repair of S based on the same alignments that are employed to repair
S′′ using X it holds that L3 fits S̄ better than it fits S′′. For example, as demonstrated in Section 4,
the cost of optimal alignment between L3 and net system S′ in Fig. 4 that is repaired using repair
recommendation ({e,f,x},{c,f,g}), which is a feasible repair recommendation under C, equals 47.
Clearly, it holds that ({e,f,x},{c,f,g}) /∈R[S,L3, f ,C].

In the next section, we discuss issues concerning discovery and approximation of minimal optimal
repair recommendations for net systems.

6. SEARCHING MODEL REPAIR RECOMMENDATIONS

This section discusses techniques that given a net system, an event log, a cost function on label
moves and a repair constraint, discover (approximate) solutions to the optimal model repair rec-
ommendation problem stated in the previous section. The section starts with definitions of some
algebraic operations and relations on repair recommendations, cf. Section 6.1. These introduced
concepts are used to simplify subsequent presentations of the proposed search techniques. Section 6.2
presents the exhaustive search method for solving the optimal model repair recommendation problem,
whereas Sections 6.3–6.5 devise techniques capable of discovering viable minimal optimal repair
recommendations using efficient approximation schemes. Section 6.6 summarizes this section.

6.1. Algebra of Repair Recommendations

Let R1 ∶= (R1
ins,R

1
skp) and R2 ∶= (R2

ins,R
2
skp) be two repair recommendations. If every element in R1

ins

is also an element in R2
ins and every element in R1

skp is also an element in R2
skp, then we say that

R1 is contained in R2, written R1 ⊑ R2. Equivalently, one can write R2 ⊒ R1; must be read as R2

contains R1. If R1 is contained in R2 and is not equal to R2, then R1 is properly contained in R2,
denoted by R1 ⊏ R2. Equivalently, one can write R2 ⊐ R1 to say that R2 properly contains R1. The
relations between repair recommendations established by ‘⊑’ and ‘⊏’ are called containment and
proper containment, respectively. The containment relation over a set of repair recommendations is
a partial order, i.e., ‘⊑’ is reflexive, antisymmetric, and transitive. Let R ∶=P(A)×P(A) be the set
of all possible repair recommendations defined over A. Then, (R,⊑) is a lattice. Indeed, for every

two repair recommendations R1,R2 ∈ R, such that R1 ∶= (R1
ins,R

1
skp) and R2 ∶= (R2

ins,R
2
skp), it holds that

R1∩R2 ∶= (R1
ins∩R2

ins,R
1
skp∩R2

skp) and R1∪R2 ∶= (R1
ins∪R2

ins,R
1
skp∪R2

skp) are the greatest lower bound

and the least upper bound of R1 and R2, respectively.
Let X ⊆ R, by Xmin and Xmax we denote the set of all minimal and the set of all maximal (as per

the containment relation) elements in X , respectively.

6.2. Brute-force Search

Brute-force search, or an exhaustive search, is a problem solving technique that consists of systemati-
cally enumerating and checking all possible candidate solutions with the purpose of identifying those
solutions that satisfy the problem statement.

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:23

ALGORITHM 1: BruteForceRecommendationSearch(S,L, f ,C)

Input: A net system S, an event log L, a cost function on label moves f , and
a repair constraint C ∶= (Cins,Cskp,res).

Output: An ordered pair composed of the set of all minimal optimal repair recommendations for S w.r.t. L as
per f restricted by C, i.e., Rmin[S,L, f ,C], and the cost of optimal alignment optCost between L and S
such that ∀R ∈Rmin[S,L, f ,C] ∶ cost[L,S,cR] = optCost, where cR is the cost function on legal moves
over S induced by f ∣R.

1 optCost ∶= +∞;R ∶= ∅;
2 foreach R ∈ {X ∈P(labels(L))×P(labels(S))∣cost[X ,C] ≤ res} do
3 cR is the cost function on legal moves over S induced by f ∣R;
4 cost ∶= cost[L,S,cR];
5 if cost < optCost then
6 optCost ∶= cost;R ∶= ∅;

7 if cost = optCost thenR ∶=R∪{R};

8 return (Rmin,optCost);

Let S ∈ S, S ∶= (N,Mini,Mfin), N ∶= (P,T,F,λ), be a net system. By labels(S), we denote the set of

all labels assigned to observable transitions in T , i.e., labels(S) ∶= img(λ)∖{τ}.4 Similarly, given
an event log L ∈B(A∗), by labels(L) we denote the set of all labels that are elements of traces in L,
i.e., labels(L) ∶=⋃υ∈L Set(υ).

It is easy to propose the brute-force approach for discovering Rmin[S,L, f ,C], i.e., the set of all
minimal optimal repair recommendations for a net system S ∈ S w.r.t. an event log L ∈B(A∗) as per a
cost function on label moves f restricted by a repair constraint C ∶= (Cins,Cskp,res). One must simply
check every feasible repair recommendation R ∈P(labels(L))×P(labels(S)) for which it holds that
cost[R,C] is less than or equal to res and select those for which cost[L,S,cR] is the lowest, where cR

is the cost function on legal moves over S induced by f ∣R, and which do not properly contain other
feasible repair recommendations that lead to the lowest cost of optimal alignment between L and S.
This intuition is formalized below.

F[S,L,C] ∶= {X ∈P(labels(L))×P(labels(S))∣cost[X ,C] ≤ res}
Rmin[S,L, f ,C] ∶= {Y ∈ F[S,L,C]∣∀Z ∈ F[S,L,C] ∶ cost[L,S,cY] ≤ cost[L,S,cZ]}min

Here, cY and cZ are the cost functions on legal moves over S induced by f ∣Y and f ∣Z , respectively.
Note that the feasible repair recommendations (F[S,L,C]) are selected from repair recommendations
in P(labels(L))×P(labels(S)). This is because it only makes sense to recommend those labels for
insertion that are actually observed in the event log and to propose those labels for skipping that are
actually used in the net system. Finally, the use of the adjusted cost functions in the above formulae
is justified by Theorem 5.3 and Lemma 5.5, which imply that the costs of optimal alignments are,
indeed, the costs of optimal alignments between net systems that are obtained via some optimal
alignment-based repairs of S and event log L.

Algorithm 1 suggests an implementation (in pseudocode) of the brute-force technique for discov-
ering the set of all minimal optimal repair recommendations.

The main logic of Algorithm 1 is encoded in the foreach loop of lines 2–7. This loop checks all
the feasible repair recommendations (one per each iteration) to select those that ‘lead’ to the lowest
cost of optimal alignment. Once all the optimal recommendations have been discovered, the minimal
ones are returned at line 8. The algorithm also returns the value of optCost which reflects the cost
of optimal alignment between the given event log and some net system obtained as a result of an
optimal alignment-based repair of the given net system, refer to Theorem 5.3 and Lemma 5.5.

4By img(f), we denote the image of function f ∶ X →Y on the entire domain X , i.e., img(f) ∶= {y ∈Y ∣∃x ∈ X ∶ f (x) = y}.

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:24 A. Polyvyanyy et al.

ALGORITHM 2: BruteForceRecommendationSearchWithOptimization(S,L, f ,C)

Input: A net system S, an event log L, a cost function on label moves f , and
a repair constraint C ∶= (Cins,Cskp,res).

Output: An ordered pair composed of the set of all minimal optimal repair recommendations for S w.r.t. L as
per f restricted by C, i.e., Rmin[S,L, f ,C], and the cost of optimal alignment optCost between L and S
such that ∀R ∈Rmin[S,L, f ,C] ∶ cost[L,S,cR] = optCost, where cR is the cost function on legal moves
over S induced by f ∣R.

1 optCost ∶= +∞;R ∶= ∅;
2 foreach R ∈ {X ∈P(labels(L))×P(labels(S))∣cost[X ,C] ≤ res}max do
3 cR is the cost function on legal moves over S induced by f ∣R;
4 cost ∶= cost[L,S,cR];
5 if cost < optCost then
6 optCost ∶= cost;R ∶= ∅;

7 if cost = optCost thenR ∶=R∪{R};

8 return (MinimizeRecommendations(R,S,L, f ,optCost),optCost);

For the optimal model repair recommendation problem, however, the number of feasible repair
recommendations tends to grow very quickly as the size of the problem increases. If one uses a
standard repair constraint C ∶= (Cins,Cskp,res) as input to Algorithm 1, then the number of feasible

repair recommendations to be checked in the iterations of the foreach loop of lines 2–7 is equal to5:

res

∑
i=0

i

∑
j=0

(∣labels(L)∣
j

)×(∣labels(S)∣
i− j

).

For example, for the input of the net system S in Fig. 2, event log L3 from Section 2.3, and the
standard repair constraint C ∶= (Cins,Cskp,6), Algorithm 1 performs 21 778 iterations of the foreach
loop of lines 2–7; note that this number is independent of the cost function on label moves used
in the input. Considering that each iteration of the loop performs one computation of the optimal
alignment between each trace in the given event log and the net system, cf. line 4, the overall
running time of Algorithm 1 is often intractable. For the above mentioned input and the standard
cost function f on label moves, the algorithm took 57.216 seconds to discover all the five minimal
optimal repair recommendations in Rmin[S,L3, f ,C]; these are recommendations ({f},{f,d,e,c,h}),
({f,a},{d,e,c,h}), ({f},{f,g,d,e,c}), ({f,x},{d,e,c,h}), and ({f,g},{d,e,c,h}). Recall that
the net system obtained after a naı̈ve repair of S using repair recommendation ({f,x},{d,e,c,h}) is
shown in Fig. 6. Recall also that the cost of optimal alignment between event log L3 and this repaired
net system is equal to 25. Note that one will obtain the same cost of optimal alignment between L3

and every net system obtained as the result of a naı̈ve repair of S using any of the other four repair
recommendations in Rmin[S,L3, f ,C].

Interestingly, one can introduce an optimization to the logic of the brute-force approach of
Algorithm 1. This optimization is due to the next observation.

PROPOSITION 6.1 (MONOTONICITY BETWEEN REPAIR RECOMMENDATIONS AND COSTS).
If R1 and R2 are two repair recommendations such that R1 ⊑ R2, then it holds that cost[υ ,S,cR2

] ≤
cost[υ ,S,cR1

], where υ ∈A∗ is a trace, S ∈ S is a net system, cR1
and cR2

are the cost functions on
legal moves over S induced by f ∣R1

and f ∣R2
, respectively, and f is a cost function on label moves. ⌟

The proof of Proposition 6.1 is immediate as, clearly, given an alignment, its cost per cR2
cannot be

larger than that one per cR1
, as cR2

can be obtained from cR1
by setting costs of some moves to zeros.

Every minimal optimal repair recommendation is (properly) contained in some optimal one. Thus,
in order to discover all minimal optimal repair recommendations, one can first discover all maximal

5(n

k
) is the binomial coefficient indexed by n and k.

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:25

ALGORITHM 3: MinimizeRecommendations(R,S,L, f ,cost)

Input: A set of repair recommendationsR, a net system S, an event log L,
a cost function on label moves f , and cost∈N0 such that for every R∈R it holds that cost[L,S,cR]=cost,
where cR is the cost function on legal moves over S induced by f ∣R.

Output: The set X of all repair recommendations such that for every X ∈X it holds that cost[L,S,cX]=cost,
there exists a repair recommendation Y ∈R such that X is contained in Y , i.e., X ⊑Y , and there exists
no repair recommendation Z such that Z ⊏ X and cost[L,S,cZ]=cost, where cX and cZ are the cost
functions on legal moves over S induced by f ∣X and f ∣Z , respectively.

1 X ∶= ∅; visited ∶= ∅; toVisit ∶=R;

2 while toVisit ≠ ∅ do
3 toVisit ∶= toVisit∖{(Rins,Rskp)}, where (Rins,Rskp) ∈ toVisit;

4 visited ∶= visited∪{(Rins,Rskp)};
5 isMinimal := true;

6 foreach (X ,Y) ∈ ({{x}∣x∈Rins}×{∅})∪({∅}×{{y}∣y∈Rskp}) do
7 R ∶= (Rins∖X ,Rskp∖Y);
8 cR is the cost function on legal moves over S induced by f ∣R;
9 if cost[L,S,cR] = cost then

10 if R /∈ visited then toVisit ∶= toVisit ∪{R};
11 isMinimal := false;

12 if isMinimal then X ∶=X ∪{(Rins,Rskp)};

13 return X ;

ones and then use them to construct all the minimal repair recommendations. This intuition is
captured in Algorithm 2.

The structure of Algorithm 2 resembles that of Algorithm 1. The only two differences between the
algorithms are (i) in the sets of repair recommendations used to guide execution of the foreach loop
of lines 2–7, and (ii) in the way the minimal optimal repair recommendations get constructed at lines
8 of both algorithms. Instead of checking every feasible repair recommendation, Algorithm 2 starts
by selecting optimal repair recommendations from the set of maximal feasible recommendations.
The discovered optimal repair recommendations are collected in setR. Then, the minimal recom-
mendations are constructed from those inR by iteratively removing one label and checking whether
the resulting repair recommendations lead to the same cost of optimal alignment (the exact procedure
for accomplishing this step is captured in Algorithm 3).

For the input of net system S in Fig. 2, event log L3 from Section 2.3, and the standard repair
constraint C ∶= (Cins,Cskp,6), Algorithm 2 performs 12 406 iterations of the foreach loop of lines
2–7. For the input of S, L3, C, and the standard cost function f on label moves, Algorithm 2 took
32.594 seconds to discover all the five minimal optimal repair recommendations.

6.3. Knapsack Search

Every set of optimal alignments Γ between traces of an event log L ∈B(A∗) and a net system S ∈ S
that can be used to compute the cost of optimal alignment between L and S, refer to Definitions 3.5
and 3.7, contains information on all the individual cost contributions of legal moves over S. The
contribution of a legal move to the cost of optimal alignment can be computed as the sum of all the
occurrences of the move in the optimal alignments in Γ multiplied by the cost of this move. Given a
repair constraint C ∶= (Cins,Cskp,res), one can repair S to cater for those legal moves in the alignments
in Γ that impact the cost of optimal alignment between L and S the most while keeping the repair
cost (as per cost functions Cins and Cskp) within the amount of available repair resources res.

Interestingly, the above intuition is in line with the intuition of the Knapsack problem [Dantzig
1957]—a classical problem in combinatorial optimization. Given a set of items, each with a value
and a weight, the Knapsack problem consists in determining the number of each item to include in a

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:26 A. Polyvyanyy et al.

ALGORITHM 4: KnapsackApproximateRecommendationSearch(S,L, f ,C,singleton)

Input: A net system S, an event log L, a cost function on label moves f , a repair constraint C ∶= (Cins,Cskp,res),
and a Boolean parameter singleton.

Output: An ordered pair (R,optCost), whereR is a set of approximate minimal optimal repair
recommendations for S w.r.t. L as per f restricted by C, and optCost is the cost of optimal alignment
between L and S such that ∀R ∈R ∶ cost[L,S,cR] = optCost, where cR is the cost function on legal
moves over S induced by f ∣R.

1 c is the cost function on legal moves over S induced by f ;

2 X ∶= {(υ ,γ)∣υ ∈ L ∧ γ ∈Oυ
S,c};

3 Y ⊆ X such that ⋃y∈Y{π1(y)} = Set(L) and ∀y1 ∈Y ∀y2 ∈Y ∶ (π1(y1) = π1(y2))⇒ y1 = y2;

4 optCost ∶= ∑(υ ,γ)∈Y (L(υ)×c(γ));

5 weights ∶= {(({x},∅),Cins(x))∣(x,≫) ∈ dom(f)}∪{((∅,{x}),Cskp(x))∣(≫,x) ∈ dom(f)};
6 if ∀w ∈ img(weights) ∶ w > res then return ({(∅,∅)},optCost);
7 values ∶= {(({x},∅), f ((x,≫))×count((x,≫),Y,L,S))∣(x,≫) ∈ dom(f)} ∪
8 {((∅,{x}), f ((≫,x))×count((≫,x),Y,L,S))∣(≫,x) ∈ dom(f)};

9 K ∶= ∅;R ∶= ∅;
10 if singleton then K ∶= Knapsack01OneSolution(weights,values,res);
11 else K ∶= Knapsack01AllSolutions(weights,values,res);

12 foreach K ∈K do
13 R ∶= ⋃k∈K k;
14 cR is the cost function on legal moves over S induced by f ∣R;
15 cost ∶= cost[L,S,cR];

16 if cost < optCost then
17 optCost ∶= cost;R ∶= ∅;

18 if cost = optCost thenR ∶=R∪{R};

19 return (R,optCost);

collection so that the total weight of items in the collection is less than or equal to a given capacity
and the total value of the collection is as large as possible. The 0/1 Knapsack problem [Fayard and
Plateau 1975; Martello et al. 2000] is a variant of the above stated problem. It requires solutions to
be sets, i.e., no item can be included more than once in a solution to a 0/1 Knapsack problem.

A solution to the 0/1 Knapsack problem for the input of a set of repair recommendations, each
with a value, i.e., its impact on the cost of optimal alignment between L and a repaired version of S
obtained using this recommendation, and a weight, i.e., its cost as per Cins and Cskp, ‘recommends’
repairs that address the most ‘costly’ differences between the traces and executions used to build Γ.

Let S ∶= (N,Mini,Mfin), N ∶= (P,T,F,λ), be a net system, let f be a cost function on label moves,
let L be an event log, and let h be a function that maps every trace υ ∈ L to an alignment in A

υ
S . Then,

by count(m,h,L,S), m ∈ dom(f), we denote the number of times that m gets ‘reflected’ in alignments
(from the image of h) between traces in L and executions of S, i.e., count(m,h,L,S) ∶=∑υ∈L(L(υ)×∣h(υ)∣moves[m,S] ∣), where moves[m,S] ∶= {(x,y) ∈MS ∣(x,y) =m∨(y ∈ T ∧ x =≫ ∧m = (x,λ(y)))}.
Then, Algorithm 4 captures the above discussed reasoning in pseudocode.

Given a net system S, an event log L, a cost function on label moves f , a repair constraint
C ∶= (Cins,Cskp,res), Algorithm 4 discovers a set of approximations of the minimal optimal repair
recommendationsR for S w.r.t. L as per f restricted by C and the cost of optimal alignment optCost
between a net system S′ and L as per the cost function on legal moves over S′ induced by f , where S′

is some net system that can be obtained as the result of an optimal alignment-based repair of S w.r.t.
L as per f using any repair recommendation inR, cf. Definition 4.3. If the input parameter singleton
is set to true, the algorithm discovers one repair recommendation, i.e., the set of discovered repair
recommendations has exactly one element; otherwise it may contain multiple recommendations.

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:27

For every distinct trace υ in the input event log L, set Y (computed at line 3 of Algorithm 4) contains
one ordered pair composed of υ and some optimal alignment between υ and S as per the cost function
on legal moves c over S induced by f . The value of optCost (computed at line 4) is the cost of optimal
alignment between L and S as per c, refer to Definition 3.7. Functions weights (line 5) and values
(line 7), map repair recommendations to their weights and values, respectively. These functions are
computed using the principles discussed above for the elementary repair recommendations, i.e., repair
recommendations composed of a single label. If for every repair recommendation it holds that its
weight exceeds the amount of available repair resources, i.e., the weight of every item exceeds the
knapsack’s capacity, then the solution to the problem is the empty knapsack,cf. line 6 of the algorithm.

If non-empty solutions to the 0/1 Knapsack problem exist, they are discovered at lines 10 and 11 of
Algorithm 4. If the input Boolean parameter singleton is set to true, then a single solution is sought
via a call to the Knapsack01OneSolution procedure at line 10. Otherwise, all solutions are computed
by issuing a call to the Knapsack01AllSolutions procedure at line 11. The Knapsack01OneSolution
procedure can be implemented using dynamic programming [Andonov et al. 2000] or branch and
bound [Vance 1993] approaches, while the Knapsack01AllSolutions procedure can be carried out
using techniques for computing k-best solutions of knapsack problems [Leão et al. 2014].

After executing lines 10 and 11 of Algorithm 4, set K contains all the discovered solutions to
the knapsack problem. These solutions are then transformed into repair recommendations using
the foreach loop of lines 12–18. For every discovered solution K, a repair recommendation R is
constructed at line 13 as the union of elementary repair recommendations contained in the solution.
The algorithm then computes the cost of optimal alignment between L and S as per the cost function
on legal moves over S induced by f ∣R, refer to line 15. Recall, that this cost represents the cost of
optimal alignment between L and a net system obtained as a result of an optimal alignment-based
repair of S, cf. Theorem 5.3 and Lemma 5.5. Repair recommendations that lead to the minimal cost
are then collected inR at lines 16–18.

Note that Algorithm 4 is nondeterministic. This is because of multiple possible constructions of set
Y at line 3 as, indeed, there can exist multiple optimal alignments between a trace and a net system.

Let, again, C ∶= (Cins,Cskp,6) be the standard repair constraint defined under the as-
sumption that A = {a,b,c,d,e,f,g,h,x}. Then, it holds that ({({f,e,x},{g,d,c})},40) =
KnapsackApproximateRecommendationSearch(S,L3, f ,C, true), where S is the net system in Fig. 2,
L3 is the event log from Section 2.3, and f is the standard cost function on label moves for
events and activities A. On this input, set Y computed at line 3 of Algorithm 4 can be composed
of seven pairs where the first elements of the pairs are distinct traces in L3 and each second
element is the alignment between the trace at the first position in the pair and S shown on Page 15.
Then, the ‘weights’ of repairs computed at line 5 of the algorithm are given by the set weights ∶=
{(({a},∅),1),(({b},∅),1),(({c},∅),1),(({d},∅),1),(({e},∅),1),(({f},∅),1),(({g},∅),1),
(({h},∅),1),(({x},∅),1),((∅,{a}),1), ((∅,{b}),1), ((∅,{c}),1), ((∅,{d}),1), ((∅,{e}),1),
((∅,{f}),1),((∅,{g}),1),((∅,{h}),1),((∅,{x}),1)}, i.e., all the repairs have ‘weight’ of one
unit because of the given standard repair constraint. The ‘values’ of the repairs computed at
line 7 of the algorithm are given by the set values ∶= {(({a},∅),9),(({b},∅),0),(({c},∅),9),
(({d},∅),7),(({e},∅),17), (({f},∅),10), (({g},∅),0), (({h},∅),0), (({x},∅),9), ((∅, {a}),
7), ((∅, {b}),0), ((∅,{c}),17), ((∅, {d}),15), ((∅, {e}),0), ((∅, {f}),2), ((∅, {g}),12), ((∅,
{h}),6),((∅,{x}),0)}. For example, the ‘value’ of repair recommendation (∅,{c}) is seventeen,

because move (≫,c) occurs at positions eight, three, and seven in alignments γ2
0 , γ5

0 , and γ6
0

on Page 15, respectively. Moreover, the corresponding traces ⟨a,c,d,c,e,d,g,f⟩, ⟨a,b⟩, and
⟨a,b,c,d,e,d,f⟩ occur nine, six and two times in L3, respectively, and, thus, it holds that
count((≫,c),Y,L3,S) = 17. Hence, one possible solution to the resulting 0/1 Knapsack problem at
line 10 of the algorithm is K ∶= {{(({e},∅),17),(({f},∅),10),(({x},∅),9),((∅,{c}),17),((∅,
{d}),15),((∅,{g}),12)}} which gives the highest possible value of 80 for a packed rucksack
of capacity six. Note that {(({e},∅),17),(({f},∅),10),(({a},∅),9),((∅,{c}),17),((∅,{d}),
15),((∅,{g}),12)} and {(({e},∅),17),(({f},∅),10),(({c},∅),9),((∅,{c}),17),((∅,{d}),

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:28 A. Polyvyanyy et al.

a
p1

c

d

b

f

g

h

e

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11p2 p3

p4

p5

p6

p7

p8

p9

p10 p11

t12

x

t15

t16

t13

f

et14 t17

Fig. 7: A net system obtained as the result of a naı̈ve repair of the net system in Fig. 2 using repair
recommendation R ∶= ({f,e,x},{g,d,c}) discovered using Algorithm 4.

15),((∅,{g}),12)} are two other solutions to the 0/1 Knapsack problem at hand, which can be
discovered at line 11 of Algorithm 4 provided that the input singleton parameter is set to false.
Finally, at line 13 the algorithm constructs repair recommendation R ∶= ({f,e,x},{g,d,c}) by
performing the union, refer to Section 6.1, of individual recommendations in the only set contained
in K, at line 15 it computes the cost of optimal alignment between L3 and the repaired version of
S, and at line 18 the algorithm saves the result of executing the algorithm, which is returned at
line 19. Note that though the cost of optimal alignment between L3 and the repaired version of S is
40 = 120−80, where 120 is the cost of optimal alignment between L3 and S and 80 is the ‘value’ of
the discovered knapsack, in general the cost of optimal alignment between the given event log and
the repaired version of the given net system can be lower than the difference of the two numbers due
to the absence of control over the way the optimal alignments are constructed.

Fig. 7 shows net system S′′′ obtained as a result of a naı̈ve repair of S using repair recommendation
R ∶= ({f,e,x},{g,d,c}); the ‘injected’ transitions are highlighted with grey background. This repair
is performed based on optimal alignments between traces in L3 and S as per the cost function on
legal moves over S induced by f . Optimal alignments between traces in L3 and S′′′ as per the cost
function c on legal moves over S′′′ induced by f are listed below.

γ 1
7 ∶=

a b c f d ≫ e f ≫ ≫

a b c f d τ e f τ τ
t1 t2 t4 t13 t5 t7 t14 t8 t17 t11

γ 2
7 ∶=

a c ≫ d c e ≫ ≫ d ≫ g f ≫

a c τ d ≫ e τ τ d τ g f τ
t1 t4 t3 t5 t6 t3 t15 t5 t7 t9 t8 t11

γ 3
7 ∶=

a b c d e x c ≫ ≫ h a

a b c d e x c τ τ h ≫

t1 t2 t4 t5 t6 t12 t4 t3 t16 t10

γ 4
7 ∶=

≫ c ≫ d ≫ d f e g ≫

a c τ d τ ≫ f e g τ
t1 t4 t3 t5 t7 t8 t14 t9 t11

γ 5
7 ∶=

a b ≫ ≫ ≫

a b τ τ h

t1 t2 t15 t16 t10

γ 6
7 ∶=

a b c d e ≫ ≫ d ≫ f ≫ ≫

a b c d e τ τ d τ f τ τ
t1 t2 t4 t5 t6 t3 t15 t5 t7 t8 t17 t11

γ 7
7 ∶=

a b c d e b c d ≫ g ≫ ≫

a b c d e b c d τ g f τ
t1 t2 t4 t5 t6 t2 t4 t5 t7 t9 t8 t11

Using these alignments, one can easily verify that c(γ 1
7) = 0, c(γ 2

7) = 1, c(γ 3
7) = 1, c(γ 4

7) = 2,

c(γ 5
7) = 1, c(γ 6

7) = 0, and c(γ 7
7) = 1, and, thus, it holds that cost[L3,S

′′′
,c] = 10×0+9×1+9×1+7×

2+6×1+2×0+2×1 = 40.

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:29

Algorithm 4 performs 1 + n computations of optimal alignments between traces in the in-
put event log and net system (as per different cost functions on legal moves), where n is the
size of set K once the algorithm reaches the execution of line 12. Therefore, every call to
KnapsackApproximateRecommendationSearch(S,L3, f ,C, true) that reaches the execution of line
19 performs at least two costly alignment computations. Note that if the returned value of optCost is
of no interest, the algorithm can be easily adapted to rely on a single computation.

6.4. Goldratt Search

The theory of constraints, introduced by Eliyahu M. Goldratt in his book entitled The Goal [Goldratt
et al. 2012], studies approaches that help systems with managing the achievement of their goals.
Goldratt argues that every system has at least one constraint, where a constraint is anything that
prevents the system from achieving (more of) its goals. Given a system and methods for measuring
accomplishments of its goal(s), the theory of constraints proposes the following procedure for
improving performance of the system [Goldratt et al. 2012]:

(1) Identify the system’s constraint(s).
(2) Decide how to exploit the system’s constraint(s).
(3) Subordinate everything else to the above decision.
(4) Elevate the system’s constraint(s).
(5) If in the previous steps a constraint has been broken, go back to step 1, but do not allow inertia to

cause a system’s constraint.

Given a system S, an event log L, a cost function on label moves f , and a repair constraint C, our goal
is to repair S to obtain a net system S′ such that L fits S′ as much as possible. One can use the cost of
optimal alignment between L and S′ as per the cost function on legal moves over S′ induced by f as
a measure of fitness. We propose to adapt the above procedure to allow discovering approximations
of the minimal optimal repair recommendations for S w.r.t. L as per f restricted by C as follows.

(1) Identify legal moves X ⊆MS that contribute to the cost of optimal alignment between L and S.
(2) Decide to exploit a legal move x ∈ X that contributes the most to the cost of optimal alignment

between L and S per one unit of cost required to carry out a repair of S that caters for x and is
feasible given the amount of available repair resources.

(3) Subordinate all the available repair resources to repair S to cater x.
(4) Elevate x by repairing S to obtain net system S′ that caters for x.
(5) If S′ caters for x, go back to step 1 to repair S′ using the remaining repair resources, but do not

allow legal move x to contribute to the cost of optimal alignment between L and any of the net
systems obtained by repairing S′ in the subsequent iterations of the procedure.

Algorithm 5 formalizes the above devised procedure.
Line 1 of the algorithm initializes control variables and variables to be used for storing the result.

The main logic of the algorithm is encoded in the repeat loop of lines 2–28. Set X contains
repair recommendations to be explored for ‘refinement’ in the current iteration of the loop. The
constructed refined repair recommendations are collected in set R. The first iteration of the loop
starts by initializing X with the set that only contains the empty recommendation (∅,∅). This empty
recommendation is gradually refined in the course of the execution of the algorithm into the result
repair recommendation(s). Execution of the repeat loop terminates after its iteration completes
without discovering any refined recommendation, i.e.,R =∅ at line 28 of the algorithm. Otherwise,
the discovered refined recommendations are passed to the next iteration of the loop to be explored
for further refinements. After the repeat loop of lines 2–28 terminates, the foreach loop of lines
29–32 constructs the result of the algorithm by selecting each repair recommendation R in X (these
are recommendations that were explored for refinement in the last iteration of the repeat loop of
lines 2–28) that leads to the lowest cost of optimal alignment between the input event log and some
net system obtained by performing an optimal alignment-based repair of the input system using R.

Every iteration of the foreach loop of lines 4–27 searches for feasible refinements of some
repair recommendation R ∈X . Once execution of this loop reaches line 14, function w2 maps each

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:30 A. Polyvyanyy et al.

ALGORITHM 5: GoldrattApproximateRecommendationSearch(S,L, f ,C,singleton)

Input: A net system S, an event log L, a cost function on label moves f , a repair constraint C ∶= (Cins,Cskp,res),
and a Boolean value singleton.

Output: An ordered pair (R,optCost), whereR is a set of approximate minimal optimal repair
recommendations for S w.r.t. L as per f restricted by C, and optCost is the cost of optimal alignment
between L and S such that ∀R ∈R ∶ cost[L,S,cR] = optCost, where cR is the cost function on legal
moves over S induced by f ∣R.

1 R ∶= {(∅,∅)}; X ∶= ∅; costs ∶= ∅; optCost ∶= +∞;

2 repeat
3 X ∶=R;R ∶= ∅; mci ∶= 0; mrc ∶= 0; visited ∶= ∅;

4 foreach R ∶= (Rins,Rskp) ∈X do
5 cR is the cost function on legal moves over S induced by f ∣R;

6 X ∶= {(υ ,γ)∣υ ∈ L ∧ γ ∈Oυ
S,cR
};

7 Y ⊆ X such that ⋃y∈Y{π1(y)} = Set(L) and ∀y1 ∈Y ∀y2 ∈Y ∶ (π1(y1) = π1(y2))⇒ y1 = y2;

8 costs ∶= costs ∪{(R,∑(υ ,γ)∈Y (L(υ)×cR(γ)))};

9 w1 ∶= {(({x},∅),w)∣x ∈ labels(L)∖Rins ∧ w = f ((x,≫))×count((x,≫),Y,L,S) ∧ w > 0} ∪
{((∅,{x}),w)∣x ∈ labels(S)∖Rskp ∧ w = f ((≫,x))×count((≫,x),Y,L,S) ∧ w > 0};

10 free ∶=false; w2 ∶= ∅;
11 if ∃(r,w) ∈ w1 ∶ cost[r,C] = 0 then
12 free ∶=true; w2 ∶= w1;
13 else w2 ∶={(({x},∅),w)∣({x},∅) ∈ dom(w1) ∧ w=w1(({x},∅))/Cins(x)} ∪

{((∅,{x}),w)∣(∅,{x}) ∈ dom(w1) ∧ w=w1((∅,{x}))/Cskp(x)};

14 foreach (r,cci) ∈ w2 do

15 R′ ∶= R ∪ r; crc ∶= cost[r,C];

16 if R′ /∈ visited and cost[R′,C] ≤ res then

17 visited ∶= visited ∪ {R′};
18 if crc = 0 and cci >mci and free then

19 R ∶= {R′}; mci ∶= cci;
20 else if crc = 0 and cci > 0 and cci =mci and free and not singleton then

21 R ∶=R ∪ {R′};
22 else if cci >mci and not free then

23 R ∶= {R′}; mrc ∶= crc; mci ∶= cci;
24 else if crc >mrc and cci > 0 and cci =mci and not free then

25 R ∶= {R′}; mrc ∶= crc;
26 else if crc > 0 and crc =mrc and cci =mci and not free and not singleton then

27 R ∶=R ∪ {R′};

28 untilR ≠ ∅;

29 foreach R ∈X do
30 if costs(R) < optCost then
31 optCost ∶= costs(R);R ∶= ∅;

32 if costs(R) = optCost thenR ∶=R∪{R};

33 return (R,optCost);

elementary repair recommendation that can be used to refine R to its weight. If some elementary
recommendation r can be repaired for free, i.e., the cost of this elementary repair recommendation
as per the input repair constraint C is equal to zero, weights are computed (and stored in w1) as
contributions of legal moves that are recommended for repair by r to the cost of optimal alignment
between L and some net system obtained by performing an optimal alignment-based repair of S using

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:31

R, refer to lines 9–12 of the algorithm. Otherwise, the weight of an elementary recommendation
r in w2 is derived by dividing the weight of r in w1 by the cost of r as per C, refer to line 13 of
Algorithm 5, i.e., w2 stores ‘impacts’ of elementary repair recommendations on the cost of optimal
alignment per unit of repair resource.

The foreach loop of lines 14–27 is used to select elementary repair recommendation(s) with the
highest impact on the cost of optimal alignment, as per w2, to be used to refine R. The selection
process is designed to account for different values of the input singleton parameter and correct
handling of free and non-free recommendations. Execution of the body of the loop is controlled
by the variables cci, mci, crc, and mrc. They are used to store values of weight of the currently
analyzed repair recommendation (current cost improvement), maximal observed weight of repair
recommendation (maximal cost improvement), cost of current repair recommendation (current repair
cost), and maximal observed cost of repair recommendation (maximal repair cost), respectively.

Let C ∶= (Cins,Cskp,6) be the standard repair constraint defined for A = {a,b,c,d,e,f,g,h,x}.
Then, ({({f,e,a,x},{g,e})},45) = GoldrattApproximateRecommendationSearch(S,L3, f ,C, true),
where S is the net system in Fig. 2, L3 is the event log from Section 2.3, and f is the standard cost
function on label moves for events and activities A. The execution of Algorithm 5 on the above input
starts with the empty repair recommendation R ∶= (∅,∅) at line 4. Then, the algorithm approximates
which extensions of R will have the best impact on repair of S. It achieves this by constructing weights
of all possible extensions. When the algorithm reaches line 14 for the first time, set w2 is given by
{(({a},∅),9),(({c},∅),9),(({d},∅),7),(({e},∅),17),(({f},∅),10),(({x},∅),9),((∅,{a}),
7),((∅,{c}),17),((∅,{d}),15),((∅,{f}),2),((∅,{g}),12),((∅,{h}),6)}. Because the input
parameter singleton is set to true, the repair recommendation ({e},∅) is chosen nondeterministically
by the foreach loop of lines 14–27 to be used as the only element of setR in the second iteration
of the repeat loop of lines 2–28. Note that ({e},∅), according to the data in w2, has the best ‘impact’
of seventeen cost units on the cost of optimal alignment between L3 and S as per the cost function
on legal moves over S induced by f ; the impact is determined based on the optimal alignments
γ1

0 –γ7
0 between traces in L3 and S shown on Page 15, i.e., it holds that count((e,≫),Y,L3,S) = 17.

In the second iteration of the repeat loop of lines 2–28, the repair recommendation ({e},∅) gets
extended by (∅,{g}) to obtain R ∶= {({e},{g})} at the moment the algorithm reaches line 28
for the second time. The repair recommendation (∅,{g}) is chosen as it has the best impact on
optimal alignments between traces in L3 and the repaired version of S using the recommendation
({e},∅); set w2 at line 14 of the second iteration of the repeat loop of lines 2–28 is given by
{(({a},∅),9), (({c},∅),9), (({d},∅),9), (({f},∅),10), (({x},∅),9), ((∅,{a}),7), ((∅,{c}),
6),((∅,{d}),6),((∅,{e}),9),((∅,{f}),2),((∅,{g}),12),((∅,{h}),6)}. Note that these impact
values are determined based on optimal alignment as per the cost function on legal moves over S
induced by f ∣({e},∅). The subsequent iterations of the repeat loop of lines 2–28 end with the value

ofR given by {({f,e},{g})}, {({f,e,x},{g})}, {({f,e,a,x},{g})}, {({f,e,a,x},{g,e})}, and
∅. The last iteration ends with the empty set value of R because the repair recommendation
constructed in the previous iteration uses all the available repair resources, i.e., it holds that
cost[({f,e,a,x},{g,e}),C] = 6. This repair recommendation is returned as the result of the
algorithm call together with the corresponding cost of optimal alignment between L3 and the repaired
version of S at line 33 after constructing the result in the foreach loop of lines 29–32.

Fig. 8 shows net system Ŝ that is obtained as a result of a naı̈ve repair of net system S in Fig. 2
using repair recommendation R ∶= ({f,e,a,x},{g,e}); the ‘injected’ transitions are highlighted with
grey background. This repair is performed based on optimal alignments between traces in L3 and S
as per the cost function on legal moves over S induced by f . Optimal alignments between traces in

L3 and Ŝ as per the cost function c on legal moves over Ŝ induced by f are listed below.

γ 1
8 ∶=

a b c f d e ≫ f ≫ ≫

a b c f d e τ f τ τ
t1 t2 t4 t13 t5 t14 t7 t8 t19 t11

γ 2
8 ∶=

a c ≫ d ≫ c ≫ e d ≫ g f ≫

a c τ d τ c τ e d τ g f τ
t1 t4 t3 t5 t18 t4 t3 t12 t5 t7 t9 t8 t11

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:32 A. Polyvyanyy et al.

a
p1

c

d

b

f

g

he

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11
p2 p3

p4

p5
p6

p7

p8

p9

p10

p11

t17

a
t18

t19et16e

x

e f

t12 t13

t14

t15

Fig. 8: A net system obtained as the result of a naı̈ve repair of the net system in Fig. 2 using repair
recommendation R ∶= ({f,e,a,x},{g,e}) discovered using Algorithm 5.

γ 3
8 ∶=

a b c d e x c h a

a b c d e x ≫ h a

t1 t2 t4 t5 t14 t15 t10 t17

γ 4
8 ∶=

≫ c ≫ d ≫ d f e g ≫

a c τ d τ ≫ f e g τ
t1 t4 t3 t5 t7 t8 t16 t9 t11

γ 5
8 ∶=

a b ≫ ≫ ≫

a b c d h

t1 t2 t4 t5 t10

γ 6
8 ∶=

a b c d e ≫ d f ≫ ≫

a b c d e τ ≫ f τ τ
t1 t2 t4 t5 t14 t7 t8 t19 t11

γ 7
8 ∶=

a b c d e b c d ≫ g ≫ ≫

a b c d e b c d τ g f τ
t1 t2 t4 t5 t6 t2 t4 t5 t7 t9 t8 t11

One can verify that c(γ 1
8) = 0, c(γ 2

8) = 0, c(γ 3
8) = 1, c(γ 4

8) = 2, c(γ 5
8) = 3, c(γ 6

8) = 1, and c(γ 7
8) = 1,

and, thus, it holds that cost[L3, Ŝ,c] = 10×0+9×0+9×1+7×2+6×3+2×1+2×1 = 45.
Note that it holds that ({({f,c,x},{g,d,c}),({f,c,a},{g,d,c}),({f,a,x},{g,d,c})},38) =

GoldrattApproximateRecommendationSearch(S,L3, f ,C, false).
Fig. 9 shows net system Š that is obtained as a result of a naı̈ve repair of S using repair recom-

mendation R ∶= ({f,c,x},{g,d,c}); the ‘injected’ transitions are highlighted with grey background.

Optimal alignments between traces in L3 and Š as per the cost function c on legal moves over Š
induced by f are listed below.

γ 1
9 ∶=

a b c f d e ≫ ≫ ≫ ≫ f ≫ ≫

a b c f d e τ τ τ τ f τ τ
t1 t2 t4 t12 t5 t6 t3 t15 t16 t7 t8 t17 t11

γ 2
9 ∶=

a c ≫ d c e ≫ ≫ d ≫ g f ≫

a c τ d c e τ τ d τ g f τ
t1 t4 t3 t5 t14 t6 t3 t15 t5 t7 t9 t8 t11

γ 3
9 ∶=

a b c d e x c ≫ ≫ h a

a b c d e x c τ τ h ≫

t1 t2 t4 t5 t6 t13 t4 t3 t16 t10

γ 4
9 ∶=

≫ c ≫ d ≫ d f e g ≫

a c τ d τ ≫ f ≫ g τ
t1 t4 t3 t5 t7 t8 t9 t11

γ 5
9 ∶=

a b ≫ ≫ ≫

a b τ τ h

t1 t2 t15 t16 t10

γ 6
9 ∶=

a b c d e ≫ ≫ d ≫ f ≫ ≫

a b c d e τ τ d τ f τ τ
t1 t2 t4 t5 t6 t3 t15 t5 t7 t8 t17 t11

γ 7
9 ∶=

a b c d e b c d ≫ g ≫ ≫

a b c d e b c d τ g f τ
t1 t2 t4 t5 t6 t2 t4 t5 t7 t9 t8 t11

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:33

a
p1

c

d

b

f

g

h

e

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11p2 p3

p4

p5 p6

p7

p8

p9

p10 p11

t15

t16

t12

f

t17

x ct14t13

Fig. 9: A net system obtained as the result of a naı̈ve repair of the net system in Fig. 2 using repair
recommendation R ∶= ({f,c,x},{g,d,c}) discovered using Algorithm 5.

Using the above alignments, one can easily verify that, indeed, c(γ 1
9) = 0, c(γ 2

9) = 0, c(γ 3
9) = 1,

c(γ 4
9) = 3, c(γ 5

9) = 1, c(γ 6
9) = 0, and c(γ 7

9) = 1, and, thus, it holds that cost[L3, Š,c] = 10×0+9×0+
9×1+7×3+6×1+2×0+2×1 = 38.

If Algorithm 5 is invoked for the value of the singleton parameter of true and a standard repair
constraint C ∶= (Cins,Cskp,res), then it performs 1+ res computations of optimal alignments between
traces in the input event log and net system (as per different cost functions); one per each iteration of
the repeat loop of lines 2–28. Note that the same set of optimal alignments is used to compute cost
of optimal alignment at line 8 and weights of elementary repair recommendations at line 9.

6.5. Greedy Search

A greedy algorithm is a heuristic that proceeds by taking the locally optimal intermediate decisions
with the expectation of finding a globally optimal solution to the problem. A greedy strategy often
fails to discover an optimal solution. However, it may yield locally optimal solutions to the problem
that approximate a global optimal solution in a reasonable time. In this subsection, we propose a
design of a greedy strategy for approximating minimal optimal repair recommendations. This design
is captured in the pseudocode of Algorithm 6.

Algorithm 6 iteratively constructs repair recommendations by ‘expanding’ currently discovered
ones with elementary repair recommendations that lead to the best improvement in the cost of optimal
alignment with the expectation of finding a minimal optimal repair recommendation. The set that
contains one empty repair recommendation and no other recommendations is used as a starting point
for discovering the resulting recommendations, cf. initialization of set X at line 2 of Algorithm 6.
During execution of the algorithm, set X contains currently discovered repair recommendations to be
tested for expansions. The main logic of the algorithm is encoded in the repeat loop of lines 3–30,
which terminates once the algorithm depletes elements in X , i.e., X =∅.

Every iteration of the foreach loop of lines 7–28 visits and tests one repair recommendation for
expansion by elementary repair recommendations (one in every iteration of the foreach loop of
lines 8–27). The expansion takes place at line 9. If the expanded recommendation was not already
visited and is feasible, refer to line 10 in the algorithm, it is tested to be included in set X and, thus,
tested for further expansions in the next iteration of the repeat loop. The test relies on the use of
control variables. These variables store values for maximal cost improvement (mci), current cost
improvement (cci), maximal repair cost (mrc), current repair cost (crc), and current cost of optimal
alignment (cCost). The Boolean variable free is used to control special handling of situations in
which repair recommendation expansions do not lead to increases in repair costs.

Let, again, C ∶=(Cins,Cskp,6) be the standard repair constraint defined under the assumption thatA=
{a,b,c,d,e,f,g,h,x}. Then, one can employ Algorithm 6 to verify that ({({f,d,e,a},{g,d})},39)=

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:34 A. Polyvyanyy et al.

ALGORITHM 6: GreedyApproximateRecommendationSearch(S,L, f ,C,singleton)

Input: A net system S, an event log L, a cost function on label moves f , a repair constraint C ∶= (Cins,Cskp,res),
and a Boolean value singleton.

Output: An ordered pair (R,optCost), whereR is a set of approximate minimal optimal repair
recommendations for S w.r.t. L as per f restricted by C, and optCost is the cost of optimal alignment
between L and S such that ∀R ∈R ∶ cost[L,S,cR] = optCost, where cR is the cost function on legal
moves over S induced by f ∣R.

1 c is the cost function on legal moves over S induced by f ;
2 R ∶= ∅; X ∶= {(∅,∅)}; optCost ∶= cost[L,S,c]; cCost ∶= optCost;

3 repeat
4 R ∶=X ;
5 if optCost = 0 then return (R,optCost);
6 X ∶= ∅; mci ∶= 0; mrc ∶= 0; visited ∶= ∅; free ∶=false;

7 foreach (Rins,Rskp) ∈R do
8 foreach r ∈ {({x},∅)∣x∈ labels(L)∖Rins}∪{(∅,{x})∣x∈ labels(S)∖Rskp} do
9 R ∶= (Rins,Rskp) ∪ r;

10 if R /∈ visited and cost[R,C] ≤ res then
11 aCost ∶= optCost; crc ∶= cost[r,C];
12 cR is the cost function on legal moves over S induced by f ∣R;
13 if crc = 0 or (not free and optCost/crc ≥mci) then aCost ∶= cost[L,S,cR];
14 cci ∶= optCost−aCost;
15 if crc > 0 then cci ∶= cci/crc;

16 if crc > 0 and cci >mci and not free then
17 mci ∶= cci; mrc ∶= crc; X ∶= {R}; cCost ∶= aCost;
18 else if crc >mrc and cci > 0 and cci =mci and not free then
19 mrc ∶= crc; X ∶= {R}; cCost ∶= aCost;
20 else if crc>0 and crc=mrc and cci>0 and cci=mci and

not free and not singleton then
21 X ∶=X ∪{R};
22 else if crc = 0 and cci >mci and free then
23 mci ∶= cci; X ∶= {R}; cCost ∶= aCost;
24 else if crc = 0 and cci =mci and free and not singleton then
25 X ∶=X ∪{R};
26 else if crc = 0 and cci > 0 and not free then
27 free ∶=true; mci ∶= cci; X ∶= {R}; cCost ∶= aCost;

28 visited ∶= visited∪{R};

29 optCost ∶= cCost;

30 until X ≠ ∅;

31 return (R,optCost);

GreedyApproximateRecommendationSearch(S,L3, f ,C, true), where S is the system in Fig. 2, L3 is
the event log from Section 2.3, and f is the standard cost function on label moves. Algorithm 6 starts
with the empty repair recommendation and then proceeds, in the foreach loop of lines 8–28, by
exploring all its possible extensions with elementary repair recommendations. In each iteration of
the loop, one extended recommendation is constructed and the cost of optimal alignment between
L3 and the repaired version of S using the corresponding repair recommendation is computed at
line 13 of the algorithm. Thus, in the first iteration of the repeat loop of lines 3–30, the following
repair recommendation are explored: ({a},∅) with the cost of optimal alignment between L3 and
the repaired version of S using this repair recommendation of 111, ({b},∅) with the cost of 120,
({c},∅) with the cost of 111, ({d},∅) with the cost of 113, ({e},∅) with the cost of 94, ({f},∅)

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:35

a
p1

c

d

b

f

g

he

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11p2 p3

p4

p5

p6

p7

p8

p9

p10

p11

t18

t12

f

e

t15

t19

ed

d

t17

a

t13 t14

t16

Fig. 10: A net system obtained as the result of a naı̈ve repair of the net system in Fig. 2 using repair
recommendation R ∶= ({f,d,e,a},{g,d}) discovered using Algorithm 6.

with the cost of 110, ({g},∅) with the cost of 120, ({h},∅) with the cost of 120, ({x},∅) with
the cost of 111, (∅,{a}) with the cost of 113, (∅,{b}) with the cost of 120, (∅,{c}) with the cost
of 103, (∅,{d}) with the cost of 105, (∅,{e}) with the cost of 111, (∅,{f}) with the cost of 118,
(∅,{g}) with the cost of 108, and (∅,{h}) with the cost of 114. Because repair recommendation
({e},∅) leads to the best cost of optimal alignment of 94, set X is equal to {({e},∅)} at the end
of the first iteration of the repeat loop of lines 3–30. In the second iteration of this loop, sixteen
distinct extensions of ({e},∅) are explored and the best extension of ({e},{g}) that leads to the cost
of optimal alignment of 82 is chosen. In the third iteration, fifteen further extensions are explored
and ({e},{g,d}) with the cost of 67 is chosen. In the fourth iteration, fourteen extensions are
explored and ({f,e},{g,d}) with the cost of 57 is chosen. In the fifth iteration, thirteen extensions
are explored and ({f,e,a},{g,d}) with the cost of 48 is chosen. Finally, in the sixth iteration of the
foreach loop of lines 3–30, twelve extensions are explored and ({f,d,e,a},{g,d}) with the cost
of optimal alignment of 39 is chosen as the one that can be used to perform the best repair of S. This
repair recommendation cannot be extended further as every its extensions will have the cost that
exceeds the amount of available repair resources res. Finally, at line 31, this repair recommendation
and the cost of 39 are returned as the result of the call to Algorithm 6.

Fig. 10 shows net system S̆ that is obtained as a result of a naı̈ve repair of S using repair recommen-
dation R ∶= ({f,d,e,a},{g,d}); the ‘injected’ transitions are highlighted with grey background. This
repair is performed based on optimal alignments between traces in L3 and S as per the cost function

on legal moves over S induced by f . Optimal alignments between traces in L3 and S̆ as per the cost

function c on legal moves over S̆ induced by f are listed below.

γ 1
10∶=

a b c f d ≫ e f ≫ ≫

a b c f d τ e f τ τ
t1 t2 t4 t12 t5 t7 t16 t8 t19 t11

γ 2
10 ∶=

a c d c e ≫ d ≫ g f ≫

a c d ≫ e τ d τ g f τ
t1 t4 t13 t14 t3 t5 t7 t9 t8 t11

γ 3
10 ∶=

a b c d e x c ≫ ≫ h a

a b c d e ≫ c τ τ h a

t1 t2 t4 t5 t6 t4 t3 t18 t10 t17

γ 4
10∶=

≫ c d ≫ d ≫ f e g ≫

a c d τ d τ f e g τ
t1 t4 t13 t3 t5 t7 t8 t16 t9 t11

γ 5
10 ∶=

a b ≫ ≫ ≫

a b c τ h

t1 t2 t4 t18 t10

γ 6
10∶=

a b c d e d ≫ f ≫ ≫

a b c d e d τ f τ τ
t1 t2 t4 t13 t14 t5 t7 t8 t19 t11

γ 7
10∶=

a b c d e b c d ≫ g ≫ ≫

a b c d e b c d τ g f τ
t1 t2 t4 t5 t6 t2 t4 t5 t7 t9 t8 t11

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:36 A. Polyvyanyy et al.

a
p1

c

d

b

f

g

h

e

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11
p2 p3

p4

p5

p6

p7

p8

p9

p10

p11

t13

t15

t16

t17

t18

e f

t12 t13

et14

Fig. 11: A net system obtained as the result of a naı̈ve repair of the net system in Fig. 2 using repair
recommendation R ∶= ({f,e},{g,d,e,c}) discovered using Algorithm 6.

One can use the above alignments to verify that c(γ 1
10) = 0, c(γ 2

10) = 1, c(γ 3
10) = 1, c(γ 4

10) = 1,

c(γ 5
10) = 2, c(γ 6

10) = 0, and c(γ 7
10) = 1, and, thus, it holds that cost[L3, S̆,c] = 10×0+9×1+9×1+7×

1+6×2+2×0+2×1 = 39.
Note that one can obtain a better result if the input Boolean parameter singleton is set to

false. In particular, it holds that GreedyApproximateRecommendationSearch(S,L3, f ,C, false) =
({({f,e},{g,d,e,c}),33).

Fig. 11 shows net system S̃ that is obtained as a result of a naı̈ve repair of net system S in Fig. 2
using repair recommendation R ∶= ({f,e},{g,d,e,c}); the ‘injected’ transitions are highlighted with
grey background. This repair is performed based on optimal alignments between traces in L3 and S
as per the cost function on legal moves over S induced by f . Optimal alignments between traces in
L3 and S̃ as per the cost function c on legal moves over S̃ induced by f are listed below.

γ 1
11∶=

a b c f d ≫ e f ≫ ≫

a b c f d τ e f τ τ
t1 t2 t4 t13 t5 t7 t14 t8 t18 t11

γ 2
11 ∶=

a c ≫ d ≫ c ≫ e d ≫ g f ≫

a c τ d τ c τ e d τ g f τ
t1 t4 t3 t5 t15 t4 t3 t12 t5 t7 t9 t8 t11

γ 3
11 ∶=

a b c d e x c ≫ ≫ h a

a b c d e ≫ c τ τ h ≫

t1 t2 t4 t5 t6 t4 t3 t17 t10

γ 4
11∶=

≫ c ≫ d ≫ ≫ ≫ d ≫ f e g ≫

a c τ d τ τ τ d τ f e g τ
t1 t4 t3 t5 t15 t3 t16 t5 t7 t8 t14 t9 t11

γ 5
11 ∶=

a b ≫ ≫ ≫

a b τ τ h

t1 t2 t16 t17 t10

γ 6
11∶=

a b c d e ≫ ≫ d ≫ f ≫ ≫

a b c d e τ τ d τ f τ τ
t1 t2 t4 t5 t6 t3 t16 t5 t7 t8 t18 t11

γ 7
11∶=

a b c d e b c d ≫ g ≫ ≫

a b c d e b c d τ g f τ
t1 t2 t4 t5 t6 t2 t4 t5 t7 t9 t8 t11

It holds that c(γ 1
11)=0, c(γ 2

11)=0, c(γ 3
11)=1, c(γ 4

11)=1, c(γ 5
11)=2, c(γ 6

11)=0, c(γ 7
11)=1, and, thus,

cost[L3, S̃,c] = 10×0+9×0+9×2+7×1+6×1+2×0+2×1 = 33.
When Algorithm 6 is invoked for the value of the singleton parameter of true and a standard

repair constraint C ∶= (Cins,Cskp,res), it performs at most 1+∑i<res
i=0 (∣labels(L)∣+ ∣labels(S)∣− i)

computations of optimal alignments between traces in the input event log L and system S (as per
different cost functions). The maximal number of optimal alignment computations is observed when

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:37

the given amount of repair resources res is not sufficient to discover a repair recommendation that
can be used to repair S into a net system S′ for which it holds that L fits S′ perfectly.

6.6. Summary and Discussion

Table I summarizes the results of invoking all the algorithms from Subsections 6.2–6.5 for the input
of the net system in Fig. 2, event log L3 from Subsection 2.3, the standard cost function on label
moves for events and activities A = {a,b,c,d,e,f,g,h,x}, and the standard repair constraint C ∶=
(Cins,Cskp,6). For different combinations of algorithms and values of the input singleton parameter
(columns “Algorithm” and “Singleton”, respectively), Table I lists the amount of employed repair
resources (column “Res.”), time in seconds of executing the respective algorithm (column “Time
(s)”), number of discovered approximate minimal optimal repair recommendations (column “# Rec.”),
number of computations of optimal alignments between traces in the input event log and net system
(column “# Align.Comp.”), the cost of optimal alignment between the input event log and a net
system that can be obtained as a result of an optimal alignment-based repair of the input net system
using one of the discovered recommendations (column “Cost”), and a measure of fitness between the
event log and the repaired model (column “Fitness”).

The reported fitness values are the relative fitness values computed as per Definition 7.3.2 in [Adri-
ansyah 2014]. Relative fitness values rely on alignments to quantify conformance. Intuitively, the
relative fitness between a given event log and net system is computed as one minus one divided by
the number of traces in the event log multiplied by the sum of normalized costs of optimal alignment
between each trace in the even log and the net system; each cost is normalized by the highest possible
cost of optimal alignment between the corresponding trace and the net system. The highest possible
cost of optimal alignment between a trace and net system is determined by the sum of costs of moves
on trace defined for each event in the trace and costs of moves on system defined for each transition
in the shortest execution of the net system. A relative fitness measure takes a value between 0 and 1.
The closer the fitness value is to 1, the better the event log fits the net system. Note that a relative
fitness value of 1 denotes perfect fitness. Note also that the relation between the reported costs of
optimal alignments and relative fitness values is not monotonic. This is due to the fact that naı̈ve
repairs have non-trivial effects on the shortest executions of the repaired systems. Nevertheless, one
can clearly identify a trend that lower costs of optimal alignments imply better fitness values between
the event log and the repaired net systems. It is worth mentioning that the relative fitness between L3

and the original (non-repaired) net system shown in Fig. 2 is equal to 0.735.

Table I: Summary of results of searching (approximate) minimal optimal repair recommendations for
the input of net system S in Fig. 2, event log L3 from Section 2.3, the standard cost function on label
moves for events and activities that coincide with the universe of labels A ∶= {a,b,c,d,e,f,g,h,x},
and the standard repair constraint C ∶=(Cins,Cskp,6); recall from Section 4 that cost[L3,S,c] = 120,
where c is the standard cost function on legal moves over S.

Algorithm Singleton Res. Time (s) # Rec. # Align.Comp. Cost Fitness

Knapsack true 6 0.009 1 2 40 0.886
Goldratt true 6 0.021 1 7 45 0.891
Goldratt false 6 0.03 3 12 38 0.907
Greedy true 6 0.248 1 88 39 0.879
Greedy false 6 0.306 1 118 33 0.886
Brute-force (with opt.) N/A 6 32.594 5 12 406 25 0.931
Brute-force N/A 6 57.216 5 21 778 25 0.931

Table I confirms one of the expected trends, i.e., algorithms that perform more alignment com-
putations tend to discover ‘better’ repair recommendations, i.e., repair recommendations that when
used to perform optimal alignment-based repairs lead to repaired net systems that fit the given event
log better. The greedy approximation scheme that relies on the value of the input Boolean parameter
singleton of false performs 118 computations of optimal alignments between traces in the input

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:38 A. Polyvyanyy et al.

event log and net system and leads to better discovered repair recommendations as, for example,
the Goldratt scheme invoked for the same input value of the singleton parameter. At the same time,
Table I demonstrates that algorithms that rely on small numbers of alignment computations can
produce usable results. For example, the Goldratt approximation schemes perform about ten times
fewer alignment computations than the greedy schemes to discover repair recommendations of
comparable quality. This phenomenon is studied in detail in the next section.

Note that one needs to increase the amount of available repair resources from six to nine to discover
minimal optimal repair recommendations that can be used to completely repair the net system in
Fig. 2 w.r.t. event log L3 from Subsection 2.3. Table II summarizes the results of invoking all the
algorithms from Subsections 6.2–6.5 for the input that was used to construct Table I with the only
difference in the amount of available repair resources (nine instead of six).

Table II: Summary of results of searching (approximate) minimal optimal repair recommendations for
the input of net system S in Fig. 2, event log L3 from Section 2.3, the standard cost function on label
moves for events and activities that coincide with the universe of labels A ∶= {a,b,c,d,e,f,g,h,x},
and the standard repair constraint C ∶=(Cins,Cskp,9); recall from Section 4 that cost[L3,S,c] = 120,
where c is the standard cost function on legal moves over S.

Algorithm Singleton Res. Time (s) # Rec. # Align.Comp. Cost Fitness

Knapsack true 9 0.005 1 2 15 0.929
Goldratt true 9 0.024 1 10 20 0.916
Goldratt false 9 0.052 3 19 15 0.929
Greedy true 9 0.3 1 118 13 0.947
Greedy false 9 0.43 1 157 7 0.978
Brute-force (with opt.) N/A 9 77.374 3 24 337 0 1.0
Brute-force N/A 9 240.854 3 89 846 0 1.0

The three minimal optimal repair recommendations discovered by the brute-force search are
({f,a,x},{f,g,d,e,c,a}), ({f,a,x},{f,d,e,c,a,h}), and ({f,g,a,x},{d,e,c,a,h}). Note that it
is still possible to perform 89846 computations of optimal alignments between L3 and the net system
in Fig. 2 within reasonable time bounds; cf. the brute-force search row in the table. This is primarily
due to the small size of L3. The next section demonstrates that search schemes that rely on large
amounts of alignment computations for event logs of practical interest are mostly intractable.

The brute-force search strategies do not make use of the singleton parameter, as usually one needs
to check all the feasible repair recommendations to deliver the promised results. One, however,
may decide to terminate the brute-force search once it discovers a recommendation that can be
used to repair all the deviations between modeled and observed behaviors in the input net system
and event log, respectively. This can be implemented by exiting the foreach loops of lines 2–7
in Algorithms 1 and 2 once variable cost is equal to zero at the end of some iteration. With these
modifications, the brute-force strategies, with and without optimization, perform 6 294 and 15 123
alignment computations, respectively, to discover one out of the three existing minimal optimal repair
recommendations (invoked for the same input).

Finally, it is worth mentioning that the Knapsack (true), Goldratt (true), Goldratt (false), greedy
(true), and greedy (false) search schemes discover recommendations that can be used to repair the
given net system completely only if the amount of repair resources is increased to twelve, thirteen,
twelve, eleven, and ten, respectively.

7. EVALUATION

All the algorithms presented in this paper have been implemented and are publicly available.6 Using
this implementation we have conducted a series of experiments. This section reports on the results
of these experiments. The experiments were performed on a computer with an Intel Core i7-3770

6https://svn.win.tue.nl/repos/prom/Packages/SelectivePRepair

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:39

CPU@3.40GHz, 8GB of memory, running Windows 7 Enterprise and SUN JVM 1.7. To eliminate
load time from the measurements, each test was executed six times, and we recorded average times
of the second to sixth executions.

The experiments were conducted on event logs that are publicly available from the Business

Processing Intelligence Challenge (BPIC) initiative.7,8 Net systems used in the experiments were
‘mined’ from these event logs using the Inductive Miner algorithm [Leemans et al. 2013; Leemans
et al. 2015] that ships with ProM 6.3 [van Dongen et al. 2005; Verbeek et al. 2011].

The Inductive Miner algorithm takes as input an event log and a noise threshold and produces
a block-structured [Polyvyanyy 2012; Polyvyanyy and Bussler 2013] process model, e.g., a net
system. A process model is block-structured, or (well-)structured, if every node with multiple
outgoing arcs (a split) has a corresponding node with multiple incoming arcs (a join), and vice
versa, such that the part of the process model between the split and the join forms a single-entry-
single-exit (SESE) component [Vanhatalo et al. 2009; Polyvyanyy et al. 2011]; otherwise the
model is unstructured [Polyvyanyy 2012]. The noise threshold parameter is designed to allow
filtering of infrequent traces and events in an input event log prior to construction of the resulting
model [Leemans et al. 2013; Leemans et al. 2015]. The threshold parameter takes a value between
zero and one inclusive. The noise threshold value of zero indicates that no filtering is to be applied
and that the event log will fit perfectly the constructed model. The closer the value of the input noise
threshold parameter is to the value of one, the more deviations will be present between traces in the
input event log and executions of the model produced by the Inductive Miner algorithm.

Five net systems were mined from each of the studied event logs using the Inductive Miner
algorithm. The net systems were produced using different values of the noise threshold parameter;
the employed noise threshold values are 0.2, 0.4, 0.6, 0.8, and 1.0. The obtained net systems were
then repaired using repair recommendations discovered by the algorithms proposed in Section 6.
The repairs were conducted following the naı̈ve repair method, cf. Definition 4.6, based on the
optimal alignments between traces and executions of the respective event logs and net systems,
which, according to Theorem 5.3, leads to optimal alignment-based repairs, cf. Definition 4.3.

Table III presents results of the experiments conducted on the BPIC 2012 event log taken from a
Dutch Financial Institute. The top most sub-table contains information on costs of optimal alignments
between the event log and repaired net systems. The sub-table is divided into five parts, cf. columns
0.2, 0.4, 0.6, 0.8, and 1.0, where each part presents information on costs of optimal alignment
between the input event log and the repaired version of the input net system which is mined from
the event log using the respective noise threshold value. Each mined net system was repaired using
repair recommendations discovered via Algorithms 4, 5, and 6. The algorithms were invoked for the
inputs of standard cost functions on label moves and standard repair constraints. Algorithm 4 was
invoked for the value of the input singleton parameter of true, cf. column “K(T)” in the sub-table,
whereas Algorithms 5 and 6 were invoked for the values of the singleton parameter of true and false.
Consequently, columns “G(T)” and “G(F)” contain results of invoking Algorithm 5 for the values
of the singleton parameter of true and false, respectively. Similarly, columns “GR(T)” and “GR(F)”
contain the results of invoking Algorithm 6 for the true and false input singleton values, respectively.
Each algorithm was invoked for 16 different values of available repair resources, i.e., from 0 to 15.
The use of the repair resource value of zero corresponds to the situation of no repair and, therefore,
the corresponding values represent the costs of optimal alignments between the BPIC 2012 event
log and the original (non-repaired) net system, refer to row 0 in the sub-table. The three other
sub-tables are organized in a similar way as the top most one. However, instead of the costs of
optimal alignments between the event log and repaired net systems they present numbers of optimal
alignment computations (between traces in the event log and the net systems) performed to discover
repair recommendations, run times of the repair recommendation search algorithms (in seconds), and
the numbers of discovered repair recommendations; refer to the headings of the sub-tables.

7http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
8http://dx.doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:40 A. Polyvyanyy et al.

Table III: Experimental results for the BPIC 2012 event log.

���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� �����

� 	
�� 	
�� 	
�� 	
�� 	
�� ������ ������ ������ ������ ������ �	���� �	���� �	���� �	���� �	���� �
	
� �
	
� �
	
� �
	
� �
	
� ����		 ����		 ����		 ����		 ����		

� ���
 ���
 ���
 ���
 ���
 ��
�� ��
�� ��
�� ��
�� ��
�� ��
�
 ��
�
 ��
�
 ��
�
 ��
�
 ������ ������ ������ ������ ������ �	��
� �	��
� �	��
� �	��
� �	��
�

� �
� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��	�� ��	�� ��	�� ��	�� ��	�� �����	 �����	 �����	 �����	 �����	 ���	
� ���	
� ���	
� ���	
� ���	
�

 ���	� �	��� �	��� ���� ����

	�

	�

	�

	�

	� ����
 ����
 ����
 ����
 ����
 ���

 ���

 ���

 ���

 ���

 ����� ����� ����� ����� �����

	 ����
 ����
 ����
 ����� �����
���

���

���

���

���

�

�

�

�

� �	
�� ����� ����� ����� ����� �	
�� �	
�� �	
�� �	
�� �	
��

� �
��� �
��� �
��� ��
�� ��
�� ���� ���� ���� ��� ��� �
�� �
�� �
�� �
�� �
�� �
��� �
�� �
�� �
�� �
�� ���� ���� ���� ���� ����

 ���� ���� ���� ����� ����� ����� ����� ����� ����� ����� 	
�	� 	
�	� 	
�	� 	
�	� 	
�	�
����
����
����
����
���� ����� ����� ����� ����� �����

� ����� ����� ����� ���� ���� 	
��� 	
��� 	
��� 	
��� 	
��� ��
 ��
 ��
 ��
 ��

����
��

��

����
����
���
���
���
���
���

� ��
� ���� ���� �� �� 	���� 	���� 	���� 	���� 	��� �� �� �� �� �� ����
 ����
 ����
 ����
 ����
 �
��
 �
��
 �
��
 �
��
 �
��

� ��� �� �� �� �� �
�� �
�� �
��
��

��
 ���� ���� ���� ���� ���� �	
�� �
�� �
�� �
�� �
�� ���� ���� ���� ���� ����

�� ����
��
��
��
�� ���� ���� ���� ���� ���� �
��� �

		 �

		 �

		 �

		 ���� ���� ���� ���� ���� 	���� 	���� 	���� 	���� 	����

��
��� ��
� ��
� ��
� ��
� ��	�� ��	�� ��	�� ��	�� ��	�� ���� ���� ���� ���� ���� 	��� 	

� 	

� 	

� 	

� 	��� 	��� 	��� 	��
	 	��
	

�� ���	 ��

 ��

 ��

 ��

 ����� �
��	 �
��	 �
�
� �
�
� ���� ���� ���� ���� ���� 		� 	���� 	���� 	���� 	���� ��
� ��
� ��
� ���� ����

� �	 �
�� �
�� �
�� �
�� �	�� �
�� �
�� ���� ���� ����� ����� ����� ����� ����� 	��
 ��
� ��
� ��
� ��
� �	� �	� �	� 	
�� 	
��

�	 �
�	 ��� ��� ��� ��� ��	�� ����� ����� ��		 ��		 �	��� �	��� �	��� �	��� �	��� ���
���
���
���
��� ����
 ����
 ����
 ��	� ��	�

�� �
�
 ��
 ��
 ��
 ��
 ��
�� ����� ����� ��

 ��

 ����� ����� ����� ����� ����� 	��� ���� ���� ���� ���� �
�
� �	��� �	��� ���� ����

���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� �����

� �

� � � � �� �� � � �
�
� � � � �� �� � � �
�
� � � �
	
	

� � �� �� � ��� ��� � �	� �	� � �
 �
 � ��
 ��

 � 	 	 ��� ��� � 	 	 ��� ��� � 	 	 ��� ��� � 	 	 ��� ��� � 	 	 ��� ���

	 � � � ��� ��� � � � ��� � � � � ��� ��� � � � �
� �
� � � � �	� �	�

� �

 �

 �� �� �

 	
 	
 �

 � � �

 �
 �

 � � � 	�� 	�� � � � �� �� � � � 	�� 	�� � � � �	 �	 � � �
	
	

� � � � 	
 	
 � � � 	�� ��	 � � � 	�� 	�� � � � 	�
 	�
 � � � 	�� 	��

� � � � ��� ��� � � �� 	�� ��	
 � � � �	�

� � � � ��� ��� � � � 	�� 	��

� � �� �� ��
 ��
 � �� �� �	� �	�	 � �� ��
�	 ��� � �� �� ��� ��� � �� �� �� ��

�� � �� ��
	

	
 � �� �� ��
 ���� � �� ��

 ��		 � �� ��

 � �� �� ��
 ��

�� � �� �� ��� ��� � �� �
�� ��	� � �� �� ��� ���� � �� ��
�	
�	 � �� ��
�
�

�� � � � �
 �
 � � �	 �� ���� � � � ��� �	�� � � � ��� ��� � � �
��
��

� � �	 �
 ��� ��� � �	 �� ��� ���
 � �	 �	 �	
 ���	 � �	 �	 ��� ��� � �	 �	 �	� �	�

�	 � �� �� ��
 ��� � �� �
 ��
 ���� � �� �� ��	 ���� � �� �� �
� �
� � �� �� ��� ���

�� � �
 �� ��	 ��	 � �
 �� ��
 ��� � �
 �
 �
� ���� � �
 �� ��
 ��
 � �
 �
 �	� �	�

���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� �����

� ���� ���� ����
��� ���� ���	 ��� ���� ���� ���� 	��� 	��� 	
�	 	
�� 	��� ���� ���� ���� ���� ���� ��	 ��	 �� ��	 ��

� ���� ���� ���� 	�� 	��� ���� ���� ���� ���� ���
 ���� ���
 ���� ��� ��	 	��� 	��� 	��� �		� �	�� �
�	 �
�	 �
�� ���� �
��

� ��� ���� ���� ��
� ���� ���� ���� ���� ��� �
� ���� �
�� �
�
	��
��� 	��
��	
��� ��	� ��	� ���
 ��� ��� ��� ���

 ���� �
��� �

�� ���� ��	� �
� ��	�� ���� ��� ���� ���
 ����	 ����� ��		 ���
 	��	 ���� ���� 	�	 	��� ���� ��� �� �	�� �	��

	 ����� ��	 ���� ���� ��	 �	�� �	��� ���� ��
 ���� �	�
 ����� ����	 ����� ���
� 	��� ����� ����� �� �	�� ���
 ��	 ��� ���� ��

� ��
�� ��� ��� ���	� ����� �	�� �
	�� �
	�� �
�� ����� ���� ����� �
��� ����� ����� ��� ����� �����

��

�� ���� 	��� 	��� �
� ���

 ��
�	 		�� 	��� �	��� �	��� ���
 ��	�� ����� ���� ����� ���� ����� ����	 ���� ����� ��� ���� ���� ���� ���� �	�� ���� ���� ���� ��
�

� ���� 	�
�� 	���� ���� ���� ���� ��
�� ����� ���
� ��	� ���� ��
 	�� ����
 ����� ��	 ����� ��	�� ��
� ���� �	�� ���� ���� ��
 ��

� ����
 ���� ��
 �
� ��� ���� ����� �	��
 ���	 ����� ����
���
��� ��
�� ��
� ��� ����� ����� ����� ����� ���
��	
�� 	� 	��

� ����� ���� ��
�� �� ���� �	��� ����� ���� ��	 ���� 	�	�� 	��� �	��� 	��� ��� ����� ��
�� ���� ����� ���
���
��	 ��� ��

�� �����
����
���
 ���� �
�� ���� ��� ���� �	���

�
 ���� 	�� 	��� ���� 	�
�� ��� ����� ���� ���	� ����
 ���
 ���� ���� �
� ���

�� �����
	���
	��� ��	� �
 ���	 ����� �
�� ����� 	���� ���� 	��� 	
��� ���
 	
�		 ��� ����� ����� ����
 ���� ���� ���� ��� 	��� 	��	

�� ����
��	

��	 �
�� �
�� 	��� ���� ��� ���
� 			
 ���� ����� ����� ���� ����� ��� ���� �	�	 ���� ��
� ���� ���� ���� 		� 		��

� ��
�� ����� ����� 	���� 	�	�	 	��� ��� ���� ���
� 	��� �	�� ����� ���
 ���� ��
�	 �� �	��
 ����� �	��� �	��� ���� ���	 ���� 	��� 	���

�	 ����	 �	�	 ����� 	��� 	��
� 	
�� 	���
��� ���	� 	���� ���	 ��
�� ����	 		��
��� ��� �
��� �
�� ��
	� ���	� ���� �
�� �
�� 	�
	 	�
�

�� ����
 �
��	 �	�� 		��� 	���� 		�

�� ���� ���� ��	
��� ����� ����� ����

��
 ��� ����� �	�	 �
� �
	�� ���� ���
 ���� 	�� 	��

���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� �����

� �

� �

� �

 � � � � � � � � � � � � � � � � � � � � � � � �

	 � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �
 � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

�� � � � � � � � � � � � � � � � � � � � � � � �

�� � � � � � � � � � � � � � � � � � � � � � � �

�� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � �

�	 � � � � � � � � � � � � � � � � � � � � � � �

�� � � � � � � � � � � � � � � � � � � � � �

���������

��
�
�
��
��
�
��

�!
�
�

���������

��
�
�
��
��
�
��

�!
�
�

" �#����$����������!����%&����%�

%���� ��� ��	 ��
 ��� ���

���������

��
�
�
��
��
�
��

�!
�
�

'��� �����%���������!�

%���� ��� ��	 ��
 ��� ���

���������

��
�
�
��
��
�
��

�!
�
�

" �#����$�(�������)���%��%��'��� �����%�

%���� ��� ��	 ��
 ��� ���

'�����$�(�������)���%��%�

%���� ��� ��	 ��
 ��� ���

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:41

Table IV: Experimental results for the BPIC 2013 event log.

���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� �����

� 	
��	 	
��	 	
��	 	
��	 	
��	 �	�� �	�� �	�� �	�� �	�� ����� ����� ����� ����� ����� ��� ��� ��� ��� ��� �	�� �	�� �	�� �	�� �	��

� ���� ���� ���� ���� ���� ��
�� ��
�� ��
�� ��
�� ��
�� ���	� ���	� ���	� ���	� ���	� �

 �

 �

 �

 �

�		�
�		�
�		�
�		�
�		�

	 �	�
� �	�
� �	�
� �	�
� �	�
� �	��� �	��� �	��� �	��� �	��� 	�� 	�� 	�� 	�� 	�� �	� �	� �	� 	�� 	�� 	��	� 	��	� 	��	� 	��	� 	��	�

 ���� ���� ���� ���� ���� �	�� �	�� �	�� �	�� �	��
���
���
���

�

�
���
���
��� �

 �

 	���� 	���� 	���� 	���� 	����

� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� �
�
 �
�
 ��
� ��
� ��
� �		 �		 ����� ��
� ��
� ����� �����

� ���� ���� ���� ���� ���� ���
 ���
 ���
 ���
 ���
 �
�� �
�� �
�� ��� ��� ���� ���� ���� ��� ��� �
�� ��

 ��

 �
�� �
��

��
��
��
��
�� 	��� 	��� 	��� 	��� 	��� �	� �	� �	� ��� ��� �
� �
� �
� �	 �	 ���� � � ���� ����

� 	�
 	�
 	�
 	�
 	�
 	��� �
�� �
�� �
�� �
�� ��� ��� ��� ��
 ��
 �	� �	� �	� � � 	�	� 	��� 	��� 	�	� 	�	�

� ���� ���� ���� ���� ���� ���� ��	 ��	 ��	 ��	 		� 		� 		� �	 �	 		� 		� 		� ��� ���	 ���	 ��� ���

� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� � � ��	 ��	 ��	 ��	 ��� ��� ��� ���

�� 	 	 	 	 	 ��� ��� ��� ��� ��� �
 �
 �
 �
 �
 �
 ��� ��� ��� �
� �
�

�� �	� �	� �	� �	� �	� ��� � � � � �
 � � �	 � � ��� �	� �	� �� ��

�	 	
 	
 	
 	
 	
 ��	 � � � � � � 	�� �� �� 		 		

�
 � � � � � ��� � � � � �
�
�
� � �

�� � � � � � � �� 		 		 � �

�� � �� � �

���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� �����

� �

� 	 	 	 	� 	� 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	� 	�

	 	

 �� �� 	

 �� �� 	

 �� �� 	

 �� �� 	

 �	 �	

 	 � � �� �� 	 � � �
 �
 	 � � �
 �
 	 � � �
 �
 	 � � � �

� 	 � � �� �� 	 � � �� �� 	 � � �� �� 	 � � �� �� 	 � � �� ��

� 	 ��� ��� 	 �� �� 	 �� �� 	 �� �
� 	 �	� �	�

 	 � � �
� �
� 	 � � �
 �
 	 � � �
 �
 	 � � �
 ��� 	 � � ��	 ��	

� 	 � � ��� ��� 	 � � ��� ��� 	 � � ��� ��� 	 � � ��� 	�� 	 � � �	 �	

� 	 � � �� �� 	 � � ��
 ��
 	 � � ��
 ��
 	 � � ��� 	 � � ��� ���

� 	 �� �� ��� ��� 	 �� �� ��� ��� 	 �� �� ��� ��� 	 �� �� 	 �� �� ��� ���

�� 	 �� �� �� �� 	 �� �� 	� 	� 	 �� �� 	 �� �� 	 �� �� 	� 	�

�� 	 �	 �	 	�� 	�� 	 �	 �	 		� 		� 	 �	 �	 	 �	 �	 	 �	 �	 	
	 	
	

�	 	 �
 �
 		
 		
 	 �
 �
 	
� 	
� 	 	 	 �
 �
 	�� 	��

�
 	 �� �� 	
� 	
� 	 �� �� 	�� 	�� 	 �� �� 	� 	��

�� 	 �� �� 	� 	� 	 	 �� � 	��
��

�� 	 	 � ��

���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� �����

� ��
 ��
 ��	 ��
 ��
 	�� 	�� 	�� 	�� 	�� 	�� 	�� 	�� 	�� 	�� ��	 ��	 ��
 ��	 ��	 ���� ���
 ���� ���� ���

� ��� ���� ���� ����� ����	 �� ��� ��� ��� ��� ��	 ��
 ��	 ���� ���� 	�
 	�	 	�	
���
��� 	��� 	��� 	�� 	��� 	����

	 �
�� 	��� 	���
��

��� ��� ��� ��� ����� ����� ��� �� ��� �
��	 �
��� 	�	
�

�� ��� ��� 	��

	��
	�� ����
 �����

 ���� 	��� 	��� ����� ��
�
 �� ���� ���� 	���� 	���� ��� ��� ��� ���� ���� 	�	 ��	 ��
 ���� ���� 	��� �	� �	�� ����	 �	��

� ����
��
��

��

�� �� �
� �
� 	���� 	�
�
 ��� ���� ���� 	���� 	���� 	�� ��	 ��	 ����
 ����� ���� ���� ���� ���� ���

� ���� ���
 ��� ���� ���� ��� ���� ����
����
���� ��� ���� ���� 	���� 	���� 	�� �� �� �	��� ��	�	 ���� ��� ���� �	
� �	

 �
�� ���� ���� ���� ����� ��� ���� ����
��
	�� ��	 �	�� �	�� 	���� 	�
�
 	�� ��� ��� ����	 ����	 ��� ���
�� �
�� �
�

� �
�	 �
�� ���� ��� ���
 ��� ���
 ���

����
�� ��	 ���� ����
����
�
�� 	�� ��� ��� ����� 	
��	 �
�� ��	 ��	 ���� ����

� �
�	 ���� ���� ���� ���� ��� 	��� 	��� �	��	 �	��� ��� ���� ����
����
�
�� 	�	 ��� ��� �
�� ��
 ��� ���� ���

� �	�� ��
 �� �	�� �		� �� 		�� 		�� ���
 ����� ��	 ��� ���
���
��� 	�� ��� ��� �
�
 �	�� �	�� ��
 �
�

�� �	�� ���� ���� �

� �
�� �� 	��	 	��� ��
� ����� ��� ���� ���� 	�� ���� ���� �	�� �	�� �	� ��� ���

�� �
�	 ���� ���	 �
�
 �
�� �� 	��� 	��� ����� ����	 ��� ���� ���
 	�	 ���� ��� �
�� ���� ���	 ��� ���

�	 �	�� ���� ���� ���� ���� �� 	�
 	�� �	��� �	���
�� 	�	 �
�� ���
 ��� ��
� ��
�

�
 �	�� ���
 ���� ���� ��	� �� 	�� 	��� �
�� �
��� �	�� ��� ��� ���� ����

�� �	�� �	�� �
�� ���� ���� ��� ��� ���� ���� ���� ��	

�� �� ��� ���� ����

���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� ����� ���� ���� ���� ����� �����

� �

� �

	 �

 �

� 	 � � � � �

� 	 � � � � �

 � � � � � � � � � � � � � � � � � � � 	 � � � � �

� �

� �

� � � � � � � � � � � � � � � 	 � � � � � � � �

�� �

�� �

�	 � � � � � � � � � � � � � � � � 	

�
 � � � � � � � � � 	 � � � � 	

�� � � � � � � � � � � 	

�� � � � �

������������������� !�"!�

!���" ��	 ��� �� ��� ���

�� �#��$�

#"
�
�
�#
�#
"
��
%
#&
"
�

'%�("#��������������� !�"!������%�����!�

!���" ��	 ��� �� ��� ���

�� �#��$�

#"
�
�
�#
�#
"
��
%
#&
"
�

����%�����!����"���"&�

!���" ��	 ��� �� ��� ���

�� �#��$�

#"
�
�
�#
�#
"
��
%
#&
"
�

�� �#��$�

#"
�
�
�#
�#
"
��
%
#&
"
�

'%�("#�����"���#��"&���"!)����!�

!���" ��	 ��� �� ��� ���

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:42 A. Polyvyanyy et al.

�

�����

�����

�����

�����

�����

� � � � � � � � 	
 �� �� �� �� �� ��

����������	
����

�	��	��	��������������
�	���������

���������

����������

����������

���������

���������

(a)

�

�����

�����

�����

������

������

� � � � � � � 	
 � �� �� �� �� �� ��

����������	
����

�	��	��	��������������
�	���������

���������

����������

����������

���������

���������

(b)

���

����

�����

�����

������

��	���

��
����

����
���

��������

� � � � � � �
 � 	 �� �� �� �� �� ��

����������	
����

�	�
����	��������	����������

����������

�����������

�����������

���������

���������

(c)

���

����

�����

�����

������

��	���

��
����

����
���

��������

� � � � � � �
 � 	 �� �� �� �� �� ��

����������	
����

�	�
����	��������	����������

����������

�����������

�����������

���������

���������

(d)

Fig. 12: (a) and (b) show costs of optimal alignment between the BPIC 2012 event log and the
repaired versions of net systems constructed from the BPIC 2012 event log using the Inductive Miner
algorithm for the noise threshold parameters of (a) 0.2 and (b) 0.8, whereas (c) and (d) show times in
seconds spent to discover approximate minimal optimal repair recommendations that were used to
perform the repairs in (a) and (b) for the noise threshold parameters of (c) 0.2 and (d) 0.8.

Table IV is organized in the same way as Table III and presents results of the experiments conducted
on the BPIC 2013 event log taken from Volvo IT Belgium. For this setup, it was often sufficient to
use less than 15 repair resources to discover feasible repair recommendations that can be used to
obtain repaired net systems that fit the event log perfectly, which explains empty cells in the table.

Lessons learned from the above reported experiments are:

(Lesson 1) Search techniques that perform more computations of optimal alignments between traces
in the input event log and net system (as per different cost functions) tend to discover ‘better’
repair recommendations, i.e., repair recommendations that can be used to obtain repaired models
that fit the event log better.

(Lesson 2) To obtain a small improvement in the quality of discovered repair recommendations,
a search technique needs to perform a large number of additional computations of optimal
alignments between traces in the input event log and the net system (as per different cost functions).

(Lesson 3) If available repair resources are scarce, all the proposed techniques for searching approx-
imate minimal optimal repair recommendation tend to discover identical repair recommendations.

(Lesson 4) If available repair resources are scarce, approximate minimal optimal repair recommen-
dations discovered using the proposed techniques tend to coincide with the actual ones.

Lessons 1 to 3 can be easily reconfirmed by studying the results reported in Tables III and IV and
the plots in Figs. 12 and 13. Figs. 12(a) and 12(b) show the costs of optimal alignment between
the BPIC 2012 event log and repaired versions of net systems constructed from the BPIC 2012
event log using the Inductive Miner algorithm for the noise threshold parameters 0.2 and 0.8,
respectively, plotted against the amount of repair resources used to discover the corresponding
repair recommendations. Figs. 13(a) and 13(b) show similar plots but for the BPIC 2013 event log.

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:43

�

����

�����

�����

�����

�����

� � � � � � � � 	
 �� �� �� �� �� ��

����������	
����

�	��	��	��������������
�	���������

���������

����������

����������

���������

���������

(a)

�

����

�����

�����

�����

�����

� � � � � � � � 	
 �� �� �� �� �� ��

����������	
����

�	��	��	��������������
�	���������

���������

����������

����������

���������

���������

(b)

���

���

����

�����

�����

������

��	���

��
����

� � � � � � �
 � 	 �� �� �� �� �� ��

����������	
����

�	�
����	��������	����������

����������

�����������

�����������

���������

���������

(c)

���

���

����

����

�����

������

������

� � � 	 � � �
 � � �� �� �� �	 �� ��

����������	
����

�	�
����	��������	����������

����������

�����������

�����������

���������

���������

(d)

Fig. 13: (a) and (b) show costs of optimal alignment between the BPIC 2013 event log and the
repaired versions of net systems constructed from the BPIC 2013 event log using the Inductive Miner
algorithm for the noise threshold parameters of (a) 0.2 and (b) 0.8, whereas (c) and (d) show times in
seconds spent to discover approximate minimal optimal repair recommendations that were used to
perform the repairs in (a) and (b) for the noise threshold parameters of (c) 0.2 and (d) 0.8.

Using these figures, the reader can easily verify that all the five plotted curves, which represent
data collected for five different search techniques, follow a similar trajectory; note slight deviations
from the common trend in the results of Algorithm 4 in Fig. 12(a) and Algorithm 6 in Fig. 13(b).
Indeed, those algorithms that perform more computations of optimal alignments tend to discover
better repair recommendations (Lesson 1) and, when small amounts of repair resources are used,
all the algorithms tend to discover similar results (Lesson 3). However, as suggested in sub-figures
(c) and (d) of Figs. 12 and 13, in order to obtain small improvements in the quality of discovered
repair recommendations, considerable computation efforts are required (Lesson 2). These figures
report logarithm (base 2) of the times (in seconds) spent by different search techniques to discover
the corresponding repair recommendations; plotted against the amount of given repair resources. For
example, for the experiment reported in Figs. 12(b) and 12(d), all the proposed search techniques
discovered repair recommendations of the same quality for the input repair resources parameter from
1 to 3. While Algorithm 4 invoked for the value of the input singleton parameter of true spent a
bit over 2 minutes to discover all the three repair recommendations, Algorithm 6 spent 2 hours 20
minutes and 31 seconds to discover the same repair recommendations on the same inputs. For the
same experiment, when the amount of repair resources was increased to 4, Algorithm 6 for the value
of the input singleton parameter of true has discovered a repair recommendation that can be used to
repair the input net system better than a repair recommendation discovered using Algorithm 4 for
the same input. However, the costs of optimal alignment obtained between the input event log and
each of the two repaired net systems using the discovered repair recommendations differ by only
approximately 2%, while Algorithm 6 took 134 times longer than Algorithm 4 to complete.

Lesson 4 stems from the fact that for every repair recommendation search exercise conducted in
this evaluation (up to an amount of available repair resources equal or less than 3), we have observed

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:44 A. Polyvyanyy et al.

that at least one of the proposed techniques for searching approximate repair recommendations was
capable of discovering at least one minimal optimal repair recommendation. This observation was
confirmed by comparing discovered approximate recommendations with those constructed using
Algorithm 1. In addition, we ran Algorithm 2 on the inputs of the net system discovered using the
Inductive Miner algorithm from the BPIC2013 event log for the noise threshold parameter 1.0, the
BPIC 2013 event log, the standard cost function on label moves, and the five different standard repair
constraints for the amounts of available repair resources ranging from 1 to 5. The discovered repair
recommendations coincide with the best repair recommendations discovered on the same inputs by
the search techniques proposed in Section 6. For example, for the amounts of repair resources, 1,
2, 3, 4, and 5, the repair recommendations discovered using Algorithm 2 can be used to repair the
net system into systems that have the costs of optimal alignment with the BPIC 2013 event log of
39 225, 28 124, 20 571, 14 778, and 9 350, respectively. However, the times spent on executing the
algorithm range from 297 seconds to 8 days 8 hours 22 minutes and 32 seconds, as the algorithm
performed 65 785 computations of optimal alignments between the input event log and net system as
per different cost functions on legal moves for the input value of available repair resources of 5.

8. RELATED WORK

The impact-driven process model repair approach presented in this paper relates to the process mining
research studies conducted in the areas of process discovery, conformance checking, and process
model repair, as well as to the service-oriented computing works on self-healing services.

Process discovery techniques are concerned with generating a ‘good’ process model that depicts
observed behavior captured in an event log. Many discovery approaches exist in the literature [van der
Aalst 2011]: the Alpha algorithm that makes use of ordering relations of activities [van der Aalst
et al. 2004], the Heuristics Miner that discovers main behavior from noisy logs [Weijters et al.
2006], the Fuzzy Miner that caters for less structured processes and supports different levels of
abstractions [Günther and van der Aalst 2007], the Genetic Miner that balances different quality
criteria [de Medeiros et al. 2007], the Inductive Miner that discovers sound, fit, and block-structured
models [Leemans et al. 2013; Leemans et al. 2015], the discovery technique over precedence
constraints [Greco et al. 2015], etc. These algorithms vary in terms of the types of logs they can
effectively handle and the quality of discovered models. There are four main quality dimensions
(fitness, precision, simplicity and generalization) that can provide insights into how good a process
model represents reality [Buijs et al. 2012; van der Aalst 2011]. Often, trade-offs between the
different quality dimensions also need to be taken into account when assessing quality of a discovered
process model. Most discovery algorithms start from scratch. i.e., the algorithms only consider event
data and ignore existing models. Thus, it is possible to obtain models from such algorithms that are
very different to existing process models, which could potentially limit the usability of discovered
models. However, there have been research studies to incorporate the similarity of process models
as an additional quality dimension. For example, Buijs et al. take into account the similarity of a
discovered model to a given process model as the fifth quality dimension [Buijs et al. 2013]. These
recent efforts highlight how process knowledge extracted from event logs can be supplemented with
knowledge captured in reference process models to produce high-quality and representative models
and, thus, further motivate our work in the area of process model repair. In [Buijs et al. 2013], the
authors show that there may exist several good discovered models that adequately represent behavior
recorded in a given event log. By constructing a Pareto front of discovered models, one can identify
collections of non-dominating (as per some quality dimensions) process models. Similarly, one can
construct a Pareto front of repaired models obtained using different amounts of repair resources and
different repair techniques to prioritize them based on different quality criteria.

Conformance checking techniques are concerned with the detection and diagnosis of the dif-
ferences between modeled and observed behaviors of a process [Rozinat and van der Aalst 2008;
Adriansyah et al. 2011; van der Aalst 2011]. These techniques address how to determine the degree of
conformance between modeled and observed behaviors by comparing ‘allowable moves’ by a model
against ‘observed moves’ in an event log [Adriansyah 2014]. Adriansyah et al. developed a technique

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:45

to align activities in models and transitions executed in event logs and showed how to use these
alignments to replay an event log over a process model [Adriansyah et al. 2011]. Deviations between
moves on model and moves on event log are detected and the severity of deviations is quantified using
likelihood cost functions for skipped activities (activities that should be carried out according to the
model, but do not occur in the event log) and inserted activities (activities that should not be carried
out according to the model, but occur in the event log). Our technique relies on alignments such as
those proposed in [Adriansyah 2014] to solve the conformance checking problem. The main quality
dimension of interest for a conformance checking algorithm is replay fitness. In [Munoz-Gama et al.
2013; Munoz-Gama et al. 2013], hierarchical conformance checking approaches that decompose
processes using the Refined Process Structure Trees (RPSTs) [Vanhatalo et al. 2009; Polyvyanyy et al.
2011] and localize conformance problems while taking into account fitness and precision measures
are presented. In [Molka et al. 2014], the authors propose a conformance checking approach between
a process modeled using Business Process Model and Notation (BPMN) and an event log with
conformance measures in terms of precision (the fraction of model behavior supported by the event
log) and recall (the fraction of event log behavior supported by the model).

The conformance checking approach by Adriansyah [Adriansyah 2014] focuses on the control-
flow behavior conformance while abstracting from other causes for potential variations between
modeled and observed behaviors. The works in [de Leoni and van der Aalst 2013b; Mannhardt et al.
2015] describe multi-perspective conformance checking approaches which make use of a Petri net
enriched with data variables to capture the different process perspectives. De Leoni & van der Aalst
propose to align models and event logs so that the control-flow alignment is considered first and other
process perspectives (i.e., data, time and resources) are subsequently taken into account within the
objective function of an ILP problem [de Leoni and van der Aalst 2013a]. The approach presented
in [Mannhardt et al. 2015] balances different process perspectives in a customizable manner to
identify explanations for deviations. One can extend our work to consider using alignments based on
multiple process dimensions when searching optimal repair recommendations.

Techniques to improve the quality of a process model have been researched. The works in [Li
et al. 2009; Li et al. 2010; Li et al. 2011] develop an approach to transform a process model by
taking into account the similarity of process model variants based on edit distance. In order for a
process model to better reflect reality, knowledge obtained through conformance checking analysis
could be used for process model repairs. In [Gaaloul et al. 2009], the authors propose to discover
a transactional workflow model from an event log and to repair the initially designed workflow
based on the discrepancies between the two models. In [Adriansyah 2014], the alignment-based
conformance checking approach was extended to detect high-level deviation patterns such as the
activity replacement pattern, the activity reordering pattern and the activity repetition pattern. By
appending the original model with such patterns, a better alignment can be observed between a
given event log and the repaired model. The work by Fahland et al. [Fahland and van der Aalst
2015] describes an approach to repair a process model such that it can replay (most of) the event
log, i.e., to increase the fitness of the model, while staying structurally close to the original model.
This is achieved by first computing alignments to identify non-fitting traces, then grouping traces
from the event log according to the identified misalignments, then discovering a sub-process for
each group of traces, and inserting such a sub-process into the original model to enable the replay
of the corresponding non-fitting traces. This is repeated until a repaired process model is obtained
that can replay the observed behavior perfectly. The resulting repaired model contains new loops
and sub-processes to minimize misalignments between the event log and the original model. Our
approach has the same aim as the repair approach presented in [Fahland and van der Aalst 2015],
i.e., to minimize misalignments, but instead of fixing every single misalignment, we identify and
prioritize those repairs that have the highest impact on model fitness for a given repair constraint.
Hence, our approach can be used to suggest incremental process repair recommendations by making
adjustments to the cost of repairs and/or the number of available resources for repair.

Service-oriented computing (SOC) [Papazoglou 2003] proposes to compose new value-added
services from the existing component services. A service composition may yield unreliable during

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:46 A. Polyvyanyy et al.

its execution as certain component services may happen to be unavailable and/or faulty. To tackle
this problem, the notion of a self-healing service was proposed. The idea of a self-healing service
is to supply a service composition with a mechanism to allow its automatic repair at run time. A
self-healing service can repair itself by retrying, compensating, and/or substituting certain faulty
component service invocations. The reader can refer to [Eder et al. 2009; Friedrich et al. 2010; Islam
et al. 2010; Gaaloul et al. 2010] for approaches on managing self-healing services. In contrast to
these approaches, we repair service compositions (which are usually captured as process models) at
design time to allow the repaired models to better reflect the so far observed executions.

9. CONCLUSION

Process model repair guided by event data can be positioned in-between process discovery (discover-
ing a control-flow model based on just event data) and conformance checking (taking a predefined
model as the “norm”). To repair a model there is a trade-off between (1) staying close to the modeled
behavior and (2) better fitting the observed behavior. This paper focuses on impact-driven process
model repair where costs are assigned to model changes and repair resources are limited. Within
the space of possible repairs, we seek repaired models that maximize fitness (minimize mismatches
between repaired model and log) constrained by the repair resources, i.e., different repairs may have
different costs. This way model repair becomes an optimization problem that can be controlled
through easy-to-understand parameters. The trade-offs considered in this paper were not investigated
earlier and, overall, surprising few process mining papers considered model repair.

In this paper, various algorithms have been proposed and implemented. A brute-force algorithm,
and a slightly more efficient variant of it, ensure finding optimal repair recommendations, but may
be too time consuming for larger models and event logs. Hence, approximative algorithms have
been developed. These do not guarantee finding optimal repair recommendations, but require fewer
alignment computations. Experiments show that the approximations are quite good, i.e., often many
additional alignment computations are needed to achieve further small improvements in fitness.
Using the approximations, it is possible to repair real-life models in a satisfactory manner.

Future work aims at extending and improving impact-driven process model repair in various ways.
First of all, we would like to conduct more case studies to better understand the requirements of

model repair. For example, how to elicit repair constraints?
Second, we are interested in providing guarantees for our approximative algorithms. Bounds can

be set on the difference between the alignment costs of the unknown optimal repair recommendation
and the result of the approximative algorithm. This way end-users can better judge the quality of the
repair and decide whether an exhaustive search is needed. We hope that this will give us new ideas
on faster algorithms for discovering optimal repair recommendations.

Third, repairs are considered at the level of activity labels rather than model structures. The naı̈ve
repair that relies on self-loop and/or skip injections (Definition 4.6) can be improved in various
ways. Loops are introduced even if activities happen only once. Skips are always atomic. Hence, the
naı̈ve repair approach leaves ample room for improvement and model refactoring. However, this is
orthogonal to determining repairs at the level of activity labels as described in this paper.

Fourth, the techniques proposed in this work aim at repairing a process model using information
on conformance analysis between the model and a given event log. The ultimate goal is to repair
the model into one that fits the event log perfectly, i.e., certain behavioral equivalence guarantees
between the repaired model and the event log are achieved. One can adapt the problem of process
model repair to account for other notions of behavioral equivalence. A process model can be repaired
to become (‘more’) bisimilar [van Glabbeek 1990] or (‘more’) isotactic [Polyvyanyy et al. 2012]
with some given normative process model, e.g., an implementation of a system can be repaired to
better conform with its specification. To this end, one can reuse the existing quantitative techniques
for measuring behavioral equivalence of two process models [Desharnais et al. 2004; de Medeiros
et al. 2008; de Alfaro et al. 2009].

Fifth, future work will aim at considering different criteria when searching for optimal repair
recommendations. In this paper, the focus was on fitness (i.e., reducing alignment costs) and we did

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:47

not consider the other three classical conformance dimensions: simplicity, precision, and generaliza-
tion [van der Aalst 2011; van der Aalst et al. 2012]. This problem was already considered in [Buijs
et al. 2013]. However, instead of using a genetic approach (with no guarantees and possibly time
consuming), we would like to use the framework presented in this paper. The effects of inserting
or skipping activities on simplicity, precision, and generalization can be (partly) anticipated and
quantified. At the same time there should be new operators to remove unused behavior.

Last but not least, one can design new cost schemes to guide model repairs. For example, one may
want to give different penalties to the same unmatched label depending on whether it occurred at
the beginning or at the end of an alignment. Accordingly, we would like to extend the framework
proposed in this paper to account for more sophisticated cost schemes.

Acknowledgments. This research was partly supported by the Australian Research Council’s Dis-
covery Projects funding scheme (project number DP120101624).

A. PROOFS

This appendix contains proofs of mathematical statements introduced in this paper.

COROLLARY 4.4 (ALIGNMENT-BASED REPAIR).
If a net system S′ ∈ S is the result of an alignment-based repair of a net system S ∈ S w.r.t. an event
log L ∈B(A∗) as per a cost function on label moves f using a repair recommendation, then it holds
that cost[L,S′,c′] ≤ cost[L,S,c], where c and c′ are the cost functions on legal moves over S and S′

induced by f , respectively. ⌟
PROOF. It suffices to show that for every trace υ in L it holds that cost[υ ,S′,c′] ≤ cost[υ ,S,c].

According to Definition 4.3, there exists a function ψ that justifies the fact that S′ is the result of
an alignment-based repair of S. Let α ∈ L be a trace. Then, because L fits S′ at least as ‘good’ as
it fits S, cf. Definition 4.3, it holds that (c′ ○ψ)(α) ≤ cost[α,S,c] . Let γ be an optimal alignment
between α and S′ as per c′; note that γ always exists. Then, according to Definition 3.6, it holds that
c′(γ) ≤ (c′ ○ψ)(α). Finally, note that c′(γ) = cost[α,S′,c′]. ◾

LEMMA 4.7 (ALIGNMENT-BASED REPAIR).
If a net system S′ ∈ S is the result of a naı̈ve repair of a net system S ∈ S based on the alignments in the
image of a function φ , which maps every trace υ in an event log L∈B(A∗) to an optimal alignment
in O

υ
S,c, using a repair recommendation R, where c is the cost function on legal moves over S induced

by a cost function on label moves f , then S′ is the result of an alignment-based repair of S w.r.t.
L as per f using R. ⌟

PROOF. Let ψ be a function that maps every trace in L to an alignment between this trace and
an execution of S′ for which it holds that ψ(υ) = similar[φ(υ),S,S′], υ ∈ L; note that the fact that
similar[φ(υ),S,S′] ∈Aυ

S′
follows from the definition of the similar construction on alignments, refer

to Section 4. Then, ψ justifies the fact that S′ is the result of an alignment-based repair of S. Both
statements that (i) L fits S′ at least as ‘good’ as it fits S and (ii) S′ fulfills R follow immediately
from Definition 4.6 and the similar construction on alignments. Let υ ∈ L be a trace. It holds that
(c′ ○ψ)(υ) ≤ cost[υ ,S,c], where c′ is the cost function on legal moves over S′ induced by f . Note
that cost[υ ,S,c] = (c○φ)(υ) and ψ(υ) is constructed from φ(υ) by replacing some moves with
moves of zero costs as per c′, while the cost of every other move of ψ(υ) as per c′ is equal to the cost
of this move as per c. Finally, S′ fulfills R ∶= (Rins,Rskp) because similar[φ(υ),S,S′] guarantees the
absence of moves (α,≫), α ∈ Rins, and {(≫,y) ∈ {≫}×T ∣λ(y) ∈ Rskp} in the resulting alignment,
where T and λ are the set of transitions of S′ and the function that assigns labels to transitions in S′,
respectively. ◾
The next proposition captures the statement that will be used as part of proofs of subsequent results.

PROPOSITION A.1 (SIMILAR ALIGNMENTS).
If a net system S′ ∈ S is the result of a naı̈ve repair of a net system S ∈ S based on the alignments in the

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:48 A. Polyvyanyy et al.

image of a function φ using a repair recommendation R, where φ maps every trace υ in an event log
L∈B(A∗) to an alignment in A

υ
S , then it holds that c(γ) = c′(similar[γ,S,S′]), where γ ∈ img(φ), c

is the cost function on legal moves over S induced by f ∣R, c′ is the cost function on legal moves over
S′ induced by f , and f is a cost function on label moves. ⌟
The proof of Proposition A.1 follows immediately from the similar construction on alignments and
Definitions 4.2, 4.6 and 5.2.

THEOREM 5.3 (OPTIMAL ALIGNMENT-BASED REPAIR).
If a net system S′ ∈ S is the result of a naı̈ve repair of a net system S ∈ S based on the alignments in
the image of a function φ using a repair recommendation R, where φ maps every trace υ in an event
log L∈B(A∗) to an alignment in O

υ
S,c, c is the cost function on legal moves over S induced by f ∣R, f

is a cost function on label moves, then S′ is the result of an optimal alignment-based repair of S w.r.t.
L as per f using R. ⌟

PROOF. Let us assume that S′ is the result of a naı̈ve repair of S based on the alignments in the
image of φ using R ∶= (Rins,Rskp), but S′ is not the result of an optimal alignment-based repair of S
w.r.t. L as per f using R. Then, according to Definition 4.3, there exists no function that maps every
trace υ ∈ L to an alignment in O

υ
S′,c′

and justifies the fact that S′ is the result of an alignment-based

repair of S, where c′ is the cost function on legal moves over S′ induced by f . Let ψ be the function
that maps every trace υ ∈ L to the alignment similar[φ(υ),S,S′] between υ and an execution of S′,
i.e., ψ(υ) ∶= similar[φ(υ),S,S′], υ ∈ L. Let υ ∈ L be a trace.

○ It holds that cost[υ ,S,c] ≤ cost[υ ,S,c′′], where c′′ is the cost function on legal moves over S
induced by f . Let us assume that cost[υ ,S,c]> cost[υ ,S,c′′]. Then, there exists γ ∈Oυ

S,c′′
such that

for all η ∈Aυ
S it holds that c′′(γ) < c(η). Note that γ ∈Aυ

S and, thus, it must hold that c′′(γ) < c(γ).
For every legal move m ∈MS it holds that c(m) = 0 if m ∈ (Rins ×{≫})∪{(≫,y) ∈ {≫}×T ∣
λ(y) ∈ Rskp}, and c(m) = c′′(m) otherwise; this follows immediately from Definitions 4.2 and 5.2.
Therefore, for every η ∈Aυ

S it holds that c(η) ≤ c′′(η). We have reached a contradiction. Note
that (c○ψ)(υ) = cost[υ ,S,c] because ψ(υ) ∈Oυ

S,c. It also holds that (c′ ○ψ)(υ) = (c○ψ)(υ),
cf. Proposition A.1. Hence, it holds that (c′ ○ψ)(υ) ≤ cost[υ ,S,c′′].
○ It follows from the definition of the similar construction on alignments that ψ(υ) contains no

move from the set (Rins×{≫})∪{(≫,y) ∈ {≫}×T ∣λ(y) ∈ Rskp}, where T and λ are the set of
transitions of S′ and the function that assigns labels to transitions in S′, respectively.

○ Let us assume that ψ(υ) /∈Oυ
S′,c′

. Then, there exists an alignment χ ∈Aυ
S′

such that c′(χ) < (c′ ○
ψ)(υ). Let η ∈Aυ

S be such that χ = similar[η ,S,S′]. It holds that c(η) = c′(χ) and (c○φ)(υ) =
(c′ ○ψ)(υ), cf. Proposition A.1. Therefore, it holds that c(η) < (c○φ)(υ), which means that
φ(υ) /∈Oυ

S,c. We have reached a contradiction and, thus, it holds that ψ(υ) ∈Oυ
S′,c′

.

We have reached a contradiction as, clearly, ψ maps every trace υ ∈ L to an alignment in O
υ
S′,c′

and

justifies the fact that S′ is the result of an alignment-based repair of S. ◾
LEMMA 5.5 (OPTIMAL ALIGNMENT-BASED REPAIR).

If a net system S′ ∈ S is the result of a naı̈ve repair of a net system S ∈ S based on the alignments in
the image of a function φ using a repair recommendation R, where φ maps every trace υ in an event
log L∈B(A∗) to an alignment in O

υ
S,c, c is the cost function on legal moves over S induced by f ∣R,

and f is a cost function on label moves, then it holds that cost[L,S,c] = cost[L,S′,c′], where c′ is the
cost function on legal moves over S′ induced by f . ⌟

PROOF. Note that if for every trace υ ∈ L it holds that cost[υ ,S,c] = cost[υ ,S′,c′], then it also
holds that cost[L,S,c] = cost[L,S′,c′]. Let υ ∈ L be a trace and let γ ∶= similar[φ(υ),S,S′]. Then,
according to Proposition A.1, it holds that (c○φ)(υ) = c′(γ). It also holds that γ ∈Oυ

S′,c′
, refer to the

proof of Theorem 5.3. Therefore, it holds that cost[υ ,S,c] = cost[υ ,S′,c′]. ◾

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:49

B. GLOSSARY

This appendix contains a glossary of the specific mathematical notations used in this paper.

Table V: Glossary of the specific mathematical notations used in this paper. The ‘Notation’ column
exemplifies the notation. The ‘Page’ column specifies pages at which the corresponding notation is
defined. The ‘Parameters’ column explains the parameters of the notation. Finally, the ‘Meaning’
column states the meaning of the notation in natural language.

Notation Page Parameters Meaning

A
υ
S

10 υ – a trace The set that for every execution σ of S contains

S – a net system all the alignments between υ and σ , and con-
tains nothing else.

B(A) 4 A – a set The set of all finite multisets over A.

cost[R,C] 18 R – a repair recommendation The cost of R as per C.

C – a repair constraint

cost[υ ,S,c] 11 υ – a trace The cost of some optimal alignment between υ

S – a net system and S as per c.

c – a cost function on legal moves over S

cost[L,S,c] 11 L – an event log The cost of some optimal alignment between L

S – a net system and S as per c.

c – a cost function on legal moves over S

f ∣R 19 f – a cost function on label moves The adjusted cost function on label moves

R – a repair recommendation induced by f using R.

ES 7 S – a net system The set of all executions of S.

labels(L) 23 L – an event log The set of all labels that are elements of.

traces in L

labels(S) 23 S – a net system The set of all labels assigned to observable

transitions of S.

MS 9 S – a net system The set of all legal moves over S.

mhs(A) 14 A – a set of sets A minimal hitting set of A.

O
υ
S,c

11 υ – a trace The set of all optimal alignments between

S – a net system υ and S as per c.

c – a cost function on legal moves over S

R1 ⊑ R2 22 R1 – a repair recommendation R1 is contained in R2.

R2 – a repair recommendation

R1 ⊏ R2 22 R1 – a repair recommendation R1 is properly contained in R2.

R2 – a repair recommendation

Rmax 22 R – a set of repair recommendations The set of all maximal (as per the containment

relation) repair recommendations inR.

Rmin 22 R – a set of repair recommendations The set of all minimal (as per the containment

relation) repair recommendations inR.

R[S,L, f ,C] 20 S – a net system The set of all optimal repair recommendations

L – an event log for S w.r.t. L as per f restricted by C.

f – a cost function on label moves

C – a repair constraint

Rmin[S,L, f ,C] 20 S – a net system The set of all minimal optimal repair

L – an event log recommendations for S w.r.t. L as per f

f – a cost function on label moves restricted by C.

C – a repair constraint

S 6 The universe of net systems.

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:50 A. Polyvyanyy et al.

REFERENCES

Arya Adriansyah. 2014. Aligning Observed and Modeled Behavior. Ph.D. Dissertation. Technische Universiteit Eindhoven.
http://dx.doi.org/10.6100/IR770080

Arya Adriansyah, Boudewijn F. van Dongen, and Wil M.P. van der Aalst. 2011. Conformance Checking Using Cost-
Based Fitness Analysis. In Proceedings of the 15th IEEE International Enterprise Distributed Object Comput-

ing Conference, EDOC 2011, Helsinki, Finland, August 29–September 2, 2011. IEEE Computer Society, 55–64.
http://dx.doi.org/10.1109/EDOC.2011.12

Rumen Andonov, Vincent Poirriez, and Sanjay V. Rajopadhye. 2000. Unbounded knapsack problem: Dynamic programming
revisited. European Journal of Operational Research (EOR) 123, 2 (2000), 394–407.

Thomas Baier, Claudio Di Ciccio, Jan Mendling, and Mathias Weske. 2015a. Matching of Events and Activities—An
Approach Using Declarative Modeling Constraints. In Enterprise, Business-Process and Information Systems Modeling—

16th International Conference, BPMDS 2015, 20th International Conference, EMMSAD 2015, Held at CAiSE 2015,

Stockholm, Sweden, June 8–9, 2015, Proceedings (Lecture Notes in Business Information Processing), Vol. 214. Springer,
119–134. http://dx.doi.org/10.1007/978-3-319-19237-6 8

Thomas Baier, Andreas Rogge-Solti, Jan Mendling, and Mathias Weske. 2015b. Matching of events and activities: an approach
based on behavioral constraint satisfaction. In Proceedings of the 30th Annual ACM Symposium on Applied Computing,

Salamanca, Spain, April 13–17, 2015. ACM, 1225–1230.

Joos C.A.M. Buijs, Marcello La Rosa, Hajo A. Reijers, Boudewijn F. van Dongen, and Wil M.P. van der Aalst. 2013. Improving
business process models using observed behavior. In Data-Driven Process Discovery and Analysis. Springer, 44–59.

Joos C.A.M. Buijs, Boudewijn F. van Dongen, and Wil M.P. van der Aalst. 2012. On the Role of Fitness, Precision,
Generalization and Simplicity in Process Discovery. In On the Move to Meaningful Internet Systems: OTM 2012, Robert
Meersman, Hervé Panetto, Tharam Dillon, Stefanie Rinderle-Ma, Peter Dadam, Xiaofang Zhou, Siani Pearson, Alois
Ferscha, Sonia Bergamaschi, and IsabelF. Cruz (Eds.). Lecture Notes in Computer Science, Vol. 7565. Springer Berlin
Heidelberg, 305–322. http://dx.doi.org/10.1007/978-3-642-33606-5 19

Joos C.A.M. Buijs, Boudewijn F. van Dongen, and Wil M.P. van der Aalst. 2013. Discovering and Navigating a Collection
of Process Models Using Multiple Quality Dimensions. In Business Process Management Workshops—BPM 2013

International Workshops, Beijing, China, August 26, 2013, Revised Papers (Lecture Notes in Business Information

Processing), Vol. 171. Springer, 3–14. http://dx.doi.org/10.1007/978-3-319-06257-0 1

George B. Dantzig. 1957. Discrete-Variable Extremum Problems. Operations Research 5, 2 (1957), 266–277.

Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. 2009. Linear and Branching System Metrics. IEEE Transactions on

Software Engineering (TSE) 35, 2 (2009), 258–273. http://dx.doi.org/10.1109/TSE.2008.106

Massimiliano de Leoni and Wil M.P. van der Aalst. 2013a. Aligning Event Logs and Process Models for Multi-perspective
Conformance Checking: An Approach Based on Integer Linear Programming. In Business Process Management—11th

International Conference, BPM 2013, Beijing, China, August 26–30, 2013. Proceedings (Lecture Notes in Computer

Science), Vol. 8094. Springer, 113–129. http://dx.doi.org/10.1007/978-3-642-40176-3 10

Massimiliano de Leoni and Wil M.P. van der Aalst. 2013b. Data-aware Process Mining: Discovering Decisions in Processes
Using Alignments. In Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC’13). ACM, New
York, NY, USA, 1454–1461. http://dx.doi.org/10.1145/2480362.2480633

Ana Karla Alves de Medeiros, Wil M.P. van der Aalst, and A.J.M.M. Weijters. 2008. Quantifying process
equivalence based on observed behavior. Data & Knowledge Engineering (DKE) 64, 1 (2008), 55–74.
http://dx.doi.org/10.1016/j.datak.2007.06.010

Ana Karla Alves de Medeiros, A.J.M.M. Weijters, and Wil M.P. van der Aalst. 2007. Genetic process mining: an experimental
evaluation. Data Mining and Knowledge Discovery 14, 2 (2007), 245–304.

Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. 2004. Metrics for labelled Markov processes.
Theoretical Computer Science 318, 3 (2004), 323–354. http://dx.doi.org/10.1016/j.tcs.2003.09.013

Johann Eder, Juergen Mangler, Enrico Mussi, and Barbara Pernici. 2009. Using Stateful Activities to Facilitate Monitoring
and Repair in Workflow Choreographies. In 2009 IEEE Congress on Services, Part I, SERVICES I 2009, Los Angeles,

CA, USA, July 6–10, 2009. IEEE Computer Society, 219–226. http://dx.doi.org/10.1109/SERVICES-I.2009.49

Dirk Fahland and Wil M.P. van der Aalst. 2015. Model repair—aligning process models to reality. Information Systems (IS) 47
(2015), 220–243. http://dx.doi.org/10.1016/j.is.2013.12.007

Didier Fayard and Gérard Plateau. 1975. Resolution of the 0-1 knapsack problem: Comparison of methods. Mathematical

Programming (MP) 8, 1 (1975), 272–307.

Gerhard Friedrich, Mariagrazia Fugini, Enrico Mussi, Barbara Pernici, and Gaston Tagni. 2010. Exception Handling
for Repair in Service-Based Processes. IEEE Transactions on Software Engineering (TSE) 36, 2 (2010), 198–215.
http://dx.doi.org/10.1109/TSE.2010.8

Walid Gaaloul, Sami Bhiri, and Mohsen Rouached. 2010. Event-Based Design and Runtime Verification of Com-
posite Service Transactional Behavior. IEEE Transactions on Services Computing (TSC) 3, 1 (2010), 32–45.
http://dx.doi.org/10.1109/TSC.2010.1

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

Impact-Driven Process Model Repair 1:51

Walid Gaaloul, Khaled Gaaloul, Sami Bhiri, Armin Haller, and Manfred Hauswirth. 2009. Log-based transactional workflow
mining. Distributed and Parallel Databases (DPD) 25, 3 (2009), 193–240. http://dx.doi.org/10.1007/s10619-009-7040-0

E.M. Goldratt, J. Cox, and D. Whitford. 2012. The Goal: A Process of Ongoing Improvement. North River Press.

Gianluigi Greco, Antonella Guzzo, Francesco Lupia, and Luigi Pontieri. 2015. Process Discovery under Precedence Constraints.
ACM Transactions on Knowledge Discovery from Data (TKDD) 9, 4 (2015), 32. http://dx.doi.org/10.1145/2710020

Christian W. Günther and Wil M.P. van der Aalst. 2007. Fuzzy Mining—Adaptive Process Simplification Based on Multi-
perspective Metrics. In Business Process Management, 5th International Conference, BPM 2007, Brisbane, Aus-

tralia, September 24–28, 2007, Proceedings (Lecture Notes in Computer Science), Vol. 4714. Springer, 328–343.
http://dx.doi.org/10.1007/978-3-540-75183-0 24

Farhana Islam, Meherun Nesa Lucky, and Barbara Pernici. 2010. Business Analysis of Web Service Repairability. In
Proceedings of the Fourth IEEE International Conference on Research Challenges in Information Science, RCIS 2010,

Nice, France, May 19–21, 2010. IEEE, 463–472. http://dx.doi.org/10.1109/RCIS.2010.5507407

Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Proceedings of a symposium on the Complexity of

Computer Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights,

New York. (The IBM Research Symposia Series), Raymond E. Miller and James W. Thatcher (Eds.). Plenum Press, New
York, 85–103. http://www.cs.berkeley.edu/∼luca/cs172/karp.pdf

Aline A. S. Leão, Luiz H. Cherri, and Marcos N. Arenales. 2014. Determining the K-best solutions of knapsack problems.
Computers & OR 49 (2014), 71–82.

Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst. 2013. Discovering Block-Structured Process Models
from Event Logs Containing Infrequent Behaviour. In Business Process Management Workshops—BPM 2013 In-

ternational Workshops, Beijing, China, August 26, 2013, Revised Papers (Lecture Notes in Business Information

Processing), Niels Lohmann, Minseok Song, and Petia Wohed (Eds.), Vol. 171. Springer International Publishing, 66–78.
http://dx.doi.org/10.1007/978-3-319-06257-0 6

Sander J. J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst. 2015. Scalable Process Discovery with Guarantees. In
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2015) (Lecture Notes in Business Information

Processing), K. Gaaloul, R. Schmidt, S. Nurcan, S. Guerreiro, and Q. Ma (Eds.), Vol. 214. Springer International
Publishing, 85–101.

Chen Li, Manfred Reichert, and Andreas Wombacher. 2009. Discovering Reference Models by Mining Process Vari-
ants Using a Heuristic Approach. In Business Process Management, Umeshwar Dayal, Johann Eder, Jana Koehler,
and Hajo A. Reijers (Eds.). Lecture Notes in Computer Science, Vol. 5701. Springer Berlin Heidelberg, 344–362.
http://dx.doi.org/10.1007/978-3-642-03848-8 23

Chen Li, Manfred Reichert, and Andreas Wombacher. 2010. The Minadept Clustering Approach for Discovering Reference
Process Models Out of Process Variants. International Journal of Cooperative Information Systems 19, 3–4 (2010),
159–203. http://dx.doi.org/10.1142/S0218843010002139

Chen Li, Manfred Reichert, and Andreas Wombacher. 2011. Mining business process variants: Challenges, scenarios,
algorithms. Data & Knowledge Engineering (DKE) 70, 5 (2011), 409–434. http://dx.doi.org/10.1016/j.datak.2011.01.005

Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers, and Wil M.P. van der Aalst. 2015. Balanced multi-perspective
checking of process conformance. Computing (2015). http://dx.doi.org/10.1007/s00607-015-0441-1

Silvano Martello, David Pisinger, and Paolo Toth. 2000. New trends in exact algorithms for the 0-1 knapsack problem.
European Journal of Operational Research (EOR) 123, 2 (2000), 325–332.

Thomas Molka, David Redlich, Marc Drobek, Artur Caetano, Xiao-Jun Zeng, and Wasif Gilani. 2014. Conformance Checking
for BPMN-based Process Models. In Proceedings of the 29th Annual ACM Symposium on Applied Computing (SAC’14).
ACM, New York, NY, USA, 1406–1413. http://dx.doi.org/10.1145/2554850.2555061

Jorge Munoz-Gama and Josep Carmona. 2011. Enhancing precision in Process Conformance: Stability, confidence and
severity. In Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2011, part of

the IEEE Symposium Series on Computational Intelligence 2011, April 11–15, 2011, Paris, France. IEEE, 184–191.
http://dx.doi.org/10.1109/CIDM.2011.5949451

Jorge Munoz-Gama, Josep Carmona, and Wil M.P. van der Aalst. 2013. Conformance Checking in the Large: Par-
titioning and Topology. In Business Process Management—11th International Conference, BPM 2013, Beijing,

China, August 26–30, 2013. Proceedings (Lecture Notes in Computer Science), Vol. 8094. Springer, 130–145.
http://dx.doi.org/10.1007/978-3-642-40176-3 11

Jorge Munoz-Gama, Josep Carmona, and Wil M.P. van der Aalst. 2013. Hierarchical conformance checking of process models
based on event logs. In Application and Theory of Petri Nets and Concurrency. Springer, 291–310.

Mike P. Papazoglou. 2003. Service-Oriented Computing: Concepts, Characteristics and Directions. In 4th International

Conference on Web Information Systems Engineering, WISE 2003, Rome, Italy, December 10–12, 2003. IEEE Computer
Society, 3–12. http://dx.doi.org/10.1109/WISE.2003.1254461

Artem Polyvyanyy. 2012. Structuring Process Models. Ph.D. Dissertation. University of Potsdam. http://nbn-resolving.de/urn/
resolver.pl?urn:nbn:de:kobv:517-opus-59024

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

1:52 A. Polyvyanyy et al.

Artem Polyvyanyy and Christoph Bussler. 2013. The Structured Phase of Concurrency. In Seminal Contributions to Information

Systems Engineering, 25 Years of CAiSE, Janis A. Bubenko Jr., John Krogstie, Oscar Pastor, Barbara Pernici, Colette
Rolland, and Arne Sølvberg (Eds.). Springer, 257–263. http://dx.doi.org/10.1007/978-3-642-36926-1 20

Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. 2011. Simplified Computation and Generalization of the Refined
Process Structure Tree. In Web Services and Formal Methods—7th International Workshop, WS-FM 2010, Hoboken, NJ,

USA, September 16–17, 2010. Revised Selected Papers (Lecture Notes in Computer Science), Mario Bravetti and Tevfik
Bultan (Eds.), Vol. 6551. Springer, 25–41. http://dx.doi.org/10.1007/978-3-642-19589-1 2

Artem Polyvyanyy, Matthias Weidlich, and Mathias Weske. 2012. Isotactics as a Foundation for Alignment and Abstraction
of Behavioral Models. In Business Process Management—10th International Conference, BPM 2012, Tallinn, Estonia,

September 3–6, 2012. Proceedings (Lecture Notes in Computer Science), Alistair Barros, Avigdor Gal, and Ekkart
Kindler (Eds.), Vol. 7481. Springer, 335–351. http://dx.doi.org/10.1007/978-3-642-32885-5 26

Wolfgang Reisig. 1998. Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets. Springer-Verlag Berlin
Heidelberg New York. http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-62752-4

Anne Rozinat and Wil M.P. van der Aalst. 2008. Conformance checking of processes based on monitoring real behavior.
Information Systems (IS) 33, 1 (2008), 64–95. http://dx.doi.org/10.1016/j.is.2007.07.001

Wil M.P. van der Aalst. 1997. Verification of Workflow Nets. In Application and Theory of Petri Nets 1997, 18th In-

ternational Conference, ICATPN ’97, Toulouse, France, June 23–27, 1997, Proceedings (Lecture Notes in Com-

puter Science), Pierre Azéma and Gianfranco Balbo (Eds.), Vol. 1248. Springer Berlin Heidelberg, 407–426.
http://dx.doi.org/10.1007/3-540-63139-9 48

Wil M.P. van der Aalst. 2011. Process Mining: Discovery, Conformance and Enhancement of Business Processes (1st ed.).
Springer-Verlag Berlin Heidelberg. http://www.springer.com/gp/book/9783642193446

Wil M.P. van der Aalst. 2013. Decomposing Petri nets for process mining: A generic approach. Distributed and Parallel

Databases 31, 4 (2013), 471–507. http://dx.doi.org/10.1007/s10619-013-7127-5

Wil M.P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen. 2012. Replaying history on process models
for conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery (WIDM) 2, 2 (2012), 182–192. http://dx.doi.org/10.1002/widm.1045

Wil M.P. van der Aalst, Kees M. van Hee, Jan Martijn E.M. van der Werf, and Marc Verdonk. 2010. Auditing
2.0: Using Process Mining to Support Tomorrow’s Auditor. IEEE Computer (COMPUTER) 43, 3 (2010), 90–93.
http://dx.doi.org/10.1109/MC.2010.61

Wil M.P. van der Aalst, A.J.M.M. Weijters, and Laura Maruster. 2004. Workflow mining: discovering process mod-
els from event logs. IEEE Transactions on Knowledge and Data Engineering 16, 9 (Sept 2004), 1128–1142.
http://dx.doi.org/10.1109/TKDE.2004.47

Boudewijn F. van Dongen, Ana Karla Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and Wil M.P. van der Aalst.
2005. The ProM Framework: A New Era in Process Mining Tool Support. In Applications and Theory of Petri Nets

2005, 26th International Conference, ICATPN 2005, Miami, USA, June 20–25, 2005, Proceedings (Lecture Notes in

Computer Science), Gianfranco Ciardo and Philippe Darondeau (Eds.), Vol. 3536. Springer Berlin Heidelberg, 444–454.
http://dx.doi.org/10.1007/11494744 25

Rob J. van Glabbeek. 1990. The Linear Time-Branching Time Spectrum (Extended Abstract). In CONCUR’90, Theories of

Concurrency: Unification and Extension, Amsterdam, The Netherlands, August 27–30, 1990, Proceedings (Lecture Notes

in Computer Science), Vol. 458. Springer, 278–297. http://dx.doi.org/10.1007/BFb0039066

Pamela H. Vance. 1993. Knapsack Problems: Algorithms and Computer Implementations. SIAM Rev. 35, 4 (1993), 684–685.
http://dx.doi.org/10.1137/1035174

Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. 2009. The refined process structure tree. Data & Knowledge Engineering

(DKE) 68, 9 (2009), 793–818. http://dx.doi.org/10.1016/j.datak.2009.02.015

H.M.W. Verbeek, Joos C.A.M. Buijs, Boudewijn F. van Dongen, and Wil M.P. van der Aalst. 2011. XES, XE-
Same, and ProM 6. In Information Systems Evolution—CAiSE Forum 2010, Hammamet, Tunisia, June 7–9,

2010, Selected Extended Papers (Lecture Notes in Business Information Processing), Vol. 72. Springer, 60–75.
http://dx.doi.org/10.1007/978-3-642-17722-4 5

A.J.M.M. Weijters, Wil M.P. van der Aalst, and Ana Karla Alves de Medeiros. 2006. Process mining with the heuristics
miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP 166 (2006), 1–34.

Franz Wotawa. 2001. A variant of Reiter’s hitting-set algorithm. Information Processing Letters (IPL) 79, 1 (2001), 45–51.
http://dx.doi.org/10.1016/S0020-0190(00)00166-6

ACM Transactions on Software Engineering and Methodology, Publication date: July 2016.

